Sensitization of mice to real-life allergens or harmless antigen with the use of adjuvants will lead to the induction of DAMPs in the immune system. We have shown that the Th2-inducing adjuvant aluminum hydroxide or exposure of the airways to house dust mite leads to the release of DAMPs: uric acid, ATP, and IL-1. Exposure to DAMPs or PAMPs present in allergens or added to harmless allergens, such as the experimental allergen ovalbumin, induces several immune responses, including cellular influx and activation.
View Article and Find Full Text PDFHouse dust mite (HDM) is one of the most common allergens worldwide. In this study, we have addressed the involvement of IL-1 in the interaction between HDM and the innate immune response driven by lung epithelial cells (ECs) and dendritic cells (DCs) that leads to asthma. Mice lacking IL-1R on radioresistant cells, but not hematopoietic cells, failed to mount a Th2 immune response and did not develop asthma to HDM.
View Article and Find Full Text PDFAlthough deposition of uric acid (UA) crystals is known as the cause of gout, it is unclear whether UA plays a role in other inflammatory diseases. We here have shown that UA is released in the airways of allergen-challenged asthmatic patients and mice, where it was necessary for mounting T helper 2 (Th2) cell immunity, airway eosinophilia, and bronchial hyperreactivity to inhaled harmless proteins and clinically relevant house dust mite allergen. Conversely, administration of UA crystals together with protein antigen was sufficient to promote Th2 cell immunity and features of asthma.
View Article and Find Full Text PDFIt is unclear how Th2 immunity is induced in response to allergens like house dust mite (HDM). Here, we show that HDM inhalation leads to the TLR4/MyD88-dependent recruitment of IL-4 competent basophils and eosinophils, and of inflammatory DCs to the draining mediastinal nodes. Depletion of basophils only partially reduced Th2 immunity, and depletion of eosinophils had no effect on the Th2 response.
View Article and Find Full Text PDFAllergic patients mount a Th2 response to common allergens, like house dust mite (HDM), pollens, molds and animal dander. Most inhaled antigens are immunologically inert, however if these antigens are accompanied by microbial or endogenous danger patterns (alarmins), they can be recognized by inflammatory cells. Dendritic cells are the most potent antigen presenting cells, which express a wide variety of receptors on their cell surface, recognizing these microbial patterns, damage induced molecules and cytokines.
View Article and Find Full Text PDFParticulate matter, such as diesel exhaust particles (DEPs), modulate adaptive immune responses in the lung; however, their mechanism of action remains largely unclear. Pulmonary dendritic cells (DCs) are crucial mediators in regulating immune responses. We hypothesized that the immunomodulatory effects of DEPs are caused by alteration of DC function.
View Article and Find Full Text PDFThe bloodstream is an important route of dissemination of invading pathogens. Most of the small bloodborne pathogens, like bacteria or viruses, are filtered by the spleen or liver sinusoids and presented to the immune system by dendritic cells (DCs) that probe these filters for the presence of foreign antigen (Ag). However, larger pathogens, like helminths or infectious emboli, that exceed 20 microm are mostly trapped in the vasculature of the lung.
View Article and Find Full Text PDFTertiary lymphoid organs (TLOs) are organized aggregates of B and T cells formed in postembryonic life in response to chronic immune responses to infectious agents or self-antigens. Although CD11c+ dendritic cells (DCs) are consistently found in regions of TLO, their contribution to TLO organization has not been studied in detail. We found that CD11c(hi) DCs are essential for the maintenance of inducible bronchus-associated lymphoid tissue (iBALT), a form of TLO induced in the lungs after influenza virus infection.
View Article and Find Full Text PDFIt was previously shown that administration of recombinant human Fms-like tyrosine kinase receptor-3 ligand (Flt3L) before allergen challenge of sensitized mice suppresses the cardinal features of asthma through unclear mechanisms. Here, we show that Flt3L dramatically alters the balance of conventional to plasmacytoid dendritic cells (pDCs) in the lung favoring the accumulation of pDCs. Selective removal of pDCs abolished the antiinflammatory effect of Flt3L, suggesting a regulatory role for these cells in ongoing asthmatic inflammation.
View Article and Find Full Text PDFAluminum-containing adjuvants continue to be the most widely used adjuvants for human use. In the last year a major breakthrough has been the realization that alum adjuvant triggers an ancient pathway of innate recognition of crystals in monocytes and triggers them to become immunogenic dendritic cells, nature's adjuvant. This recognition can occur directly, via the triggering of the NALP3 inflammasome by alum crystals, or indirectly through release of the endogenous danger signal uric acid.
View Article and Find Full Text PDFBackground: In human lung transplantation, chronic rejection is accompanied by obliterative bronchiolitis (OB), a fibrosing inflammatory condition that leads to occlusion of the bronchial lumen and graft failure. The pathogenesis of this disorder is poorly understood, but likely involves antigen presentation by dendritic cells (DC). We studied the presence and activation status of DCs in transplanted tracheas in a mouse model of OB and studied the effect on graft luminal patency of blocking the costimulatory B7RP-1/inducible costimulator (ICOS) pathway.
View Article and Find Full Text PDFAlthough dendritic cells (DCs) play an important role in mediating protection against influenza virus, the precise role of lung DC subsets, such as CD11b- and CD11b+ conventional DCs or plasmacytoid DCs (pDCs), in different lung compartments is currently unknown. Early after intranasal infection, tracheal CD11b-CD11chi DCs migrated to the mediastinal lymph nodes (MLNs), acquiring co-stimulatory molecules in the process. This emigration from the lung was followed by an accumulation of CD11b+CD11chi DCs in the trachea and lung interstitium.
View Article and Find Full Text PDFAlum (aluminum hydroxide) is the most widely used adjuvant in human vaccines, but the mechanism of its adjuvanticity remains unknown. In vitro studies showed no stimulatory effects on dendritic cells (DCs). In the absence of adjuvant, Ag was taken up by lymph node (LN)-resident DCs that acquired soluble Ag via afferent lymphatics, whereas after injection of alum, Ag was taken up, processed, and presented by inflammatory monocytes that migrated from the peritoneum, thus becoming inflammatory DCs that induced a persistent Th2 response.
View Article and Find Full Text PDFExtracellular ATP serves as a danger signal to alert the immune system of tissue damage by acting on P2X or P2Y receptors. Here we show that allergen challenge causes acute accumulation of ATP in the airways of asthmatic subjects and mice with experimentally induced asthma. All the cardinal features of asthma, including eosinophilic airway inflammation, Th2 cytokine production and bronchial hyper-reactivity, were abrogated when lung ATP levels were locally neutralized using apyrase or when mice were treated with broad-spectrum P2-receptor antagonists.
View Article and Find Full Text PDFAirway DCs play a crucial role in the pathogenesis of allergic asthma, and interfering with their function could constitute a novel form of therapy. The sphingosine 1-phosphate receptor agonist FTY720 is an oral immunosuppressant that retains lymphocytes in lymph nodes and spleen, thus preventing lymphocyte migration to inflammatory sites. The accompanying lymphopenia could be a serious side effect that would preclude the use of FTY720 as an antiasthmatic drug.
View Article and Find Full Text PDFTolerance is the usual outcome of inhalation of harmless antigen, yet T helper (Th) type 2 cell sensitization to inhaled allergens induced by dendritic cells (DCs) is common in atopic asthma. Here, we show that both myeloid (m) and plasmacytoid (p) DCs take up inhaled antigen in the lung and present it in an immunogenic or tolerogenic form to draining node T cells. Strikingly, depletion of pDCs during inhalation of normally inert antigen led to immunoglobulin E sensitization, airway eosinophilia, goblet cell hyperplasia, and Th2 cell cytokine production, cardinal features of asthma.
View Article and Find Full Text PDF