Publications by authors named "Monika Zubik"

Background: Modern agriculture strives to sustainably manage fertilizer for both economic and environmental reasons. The monitoring of any nutritional (phosphorus, nitrogen, potassium) deficiency in growing plants is a challenge for precision farming technology. A study was carried out on three species of popular crops, celery (Apium graveolens L.

View Article and Find Full Text PDF

Photosystem II (PSII) converts light into chemical energy powering almost all life on Earth. The primary photovoltaic reaction in the PSII reaction center requires energy corresponding to 680 nm, which is significantly higher than in the case of the low-energy states in the antenna complexes involved in the harvesting of excitations driving PSII. Here we show that despite seemingly insufficient energy, the low-energy excited states can power PSII because of the activity of the thermally driven up-conversion.

View Article and Find Full Text PDF

In this paper, the application of a non-ionic detergent Cremophor EL for monomerization of chlorophyll in an aqueous medium is studied. The spectrophotometric properties of chlorophyll encapsulated into the Cremophor EL nano-emulsion system were characterized by electronic absorption, steady-state and time-resolved fluorescence as well as circular dichroism spectroscopy. The results have shown that chlorophyll dissolves more efficiently in the aqueous medium containing low-level Cremophor (5 wt%) than at an ethanolic solution even in the concentration of 10 M.

View Article and Find Full Text PDF

It emerges from numerous experiments that LHCII, the major photosynthetic antenna complex of plants, can appear not only in the trimeric or monomeric states but also as a dimer. We address the problem whether the dimeric form of the complex is just a simple intermediate element of the trimer-monomer transformation or if it can also be a physiologically relevant molecular organization form? Dimers of LHCII were analyzed with application of native electrophoresis, time-resolved fluorescence spectroscopy, and fluorescence correlation spectroscopy. The results reveal the appearance of two types of LHCII dimers: one formed by the dissociation of one monomer from the trimeric structure and the other formed by association of monomers into a distinctively different molecular organizational form, characterized by a high rate of chlorophyll excitation quenching.

View Article and Find Full Text PDF

The efficient and fluent operation of photosynthesis in plants relies on activity of pigment-protein complexes called antenna, absorbing light and transferring excitations toward the reaction centers. Here we show, based on the results of the fluorescence lifetime imaging analyses of single chloroplasts, that pigment-protein complexes, in dark-adapted plants, are not able to act effectively as photosynthetic antennas, due to pronounced, adverse excitation quenching. It appeared that the antenna function could be activated by a short (on a minute timescale) illumination with light of relatively low intensity, substantially below the photosynthesis saturation threshold.

View Article and Find Full Text PDF

The efficiency of visible light in inducing fluorescence quenching in the isolated light-harvesting complex II (LHCII) of higher plants is investigated by action spectroscopy in the visible portion of photosynthetic active radiation. The efficiency spectrum displays a relatively homogenous quenching yield across the most intense electronic transitions of the chlorophyll a and carotenoid pigments, indicating that quenching proceeds from the equilibrated state of the complex. Larger yields are observed in the 510-640-nm window, where weak transitions of LHCII-bound chromophores occur.

View Article and Find Full Text PDF

Resonance Raman analysis of the photosynthetic complex LHCII, immobilized in a polyacrylamide gel, reveals that one of the protein-bound xanthophylls, assigned as violaxanthin, undergoes light-induced molecular reconfiguration. The phototransformation is selectively observed in a trimeric structure of the complex and is associated with a pronounced twisting and a trans-cis molecular configuration change of the polyene chain of the carotenoid. Among several spectral effects accompanying the reconfiguration there are ones indicating a carotenoid triplet state.

View Article and Find Full Text PDF

The effect of violaxanthin and zeaxanthin, two main carotenoids of the xanthophyll cycle, on molecular organization of LHCII, the principal photosynthetic antenna complex of plants, was studied in a model system based on lipid-protein membranes, by means of analysis of 77 K chlorophyll a fluorescence and "native" electrophoresis. Violaxanthin was found to promote trimeric organization of LHCII, contrary to zeaxanthin which was found to destabilize trimeric structures. Moreover, violaxanthin was found to induce decomposition of oligomeric LHCII structures formed in the lipid phase and characterized by the fluorescence emission band at 715 nm.

View Article and Find Full Text PDF

An idea of a photothermal imaging microscopy (PTIM) is proposed, along with its realization based on a dependence of fluorescence anisotropy of dye molecules on heat emission in their nearest vicinity. Erythrosine B was selected as a fluorophore convenient to report thermal deactivation of the excited pigment-protein complex isolated from the photosynthetic apparatus of plants (LHCII), owing to the relatively large spectral gap between the fluorescence emission bands of chlorophyll a and a probe. Comparison of the simultaneously recorded images based on fluorescence lifetime of LHCII and fluorescence anisotropy of erythrosine shows a high rate of thermal energy dissipation from the aggregated forms of the complex and, possibly, thermal energy transmission along the protein supramolecular structures.

View Article and Find Full Text PDF

The process of primary electric charge separation in photosynthesis takes place in the reaction centers, but photosynthesis can operate efficiently and fluently due to the activity of several pigment-protein complexes called antenna, which absorb light quanta and transfer electronic excitations toward the reaction centers. LHCII is the major photosynthetic pigment-protein antenna complex of plants and appears in the trimeric form. Several recent reports point to trimeric organization of LHCII as a key factor responsible for the chloroplast architecture via stabilization of granal organization of the thylakoid membranes.

View Article and Find Full Text PDF

In this study, we analyzed multibilayer lipid-protein membranes composed of the photosynthetic light-harvesting complex II (LHCII; isolated from spinach [Spinacia oleracea]) and the plant lipids monogalcatosyldiacylglycerol and digalactosyldiacylglycerol. Two types of pigment-protein complexes were analyzed: those isolated from dark-adapted leaves (LHCII) and those from leaves preilluminated with high-intensity light (LHCII-HL). The LHCII-HL complexes were found to be partially phosphorylated and contained zeaxanthin.

View Article and Find Full Text PDF

Overexcitation of the photosynthetic apparatus is potentially dangerous because it can cause oxidative damage. Photoprotection realized via the feedback de-excitation in the pigment-protein light-harvesting complex LHCII, embedded in the chloroplast lipid environment, was studied with use of the steady-state and time-resolved fluorescence spectroscopy techniques. Illumination of LHCII results in the pronounced singlet excitation quenching, demonstrated by decreased quantum yield of the chlorophyll a fluorescence and shortening of the fluorescence lifetimes.

View Article and Find Full Text PDF

Light-harvesting pigment-protein complex of Photosystem II (LHCII) is the largest photosynthetic antenna complex of plants and the most abundant membrane protein in the biosphere. Plant fitness and productivity depend directly on a balance between excitations in the photosynthetic apparatus, generated by captured light quanta, and the rate of photochemical processes. Excess excitation energy leads to oxidative damage of the photosynthetic apparatus and entire organism and therefore the balance between the excitation density and photosynthesis requires precise and efficient regulation, operating also at the level of antenna complexes.

View Article and Find Full Text PDF

Excitation of the major photosynthetic antenna complex of plants, LHCII, with blue light (470nm) provides an advantage to plants, as it gives rise to chlorophyll a fluorescence lifetimes shorter than with excitation with red light (635nm). This difference is particularly pronounced in fluorescence emission wavelengths longer than 715nm. Illumination of LHCII preparation with blue light additionally induces fluorescence quenching, which develops on a minute timescale.

View Article and Find Full Text PDF

Plants have developed several adaptive regulatory mechanisms, operating at all the organization levels, to optimize utilization of light energy and to protect themselves against over-excitation-related damage. We report activity of a previously unknown possible regulatory mechanism that operates at the molecular level of the major photosynthetic pigment-protein complexes of plants, LHCII. This mechanism is driven exclusively by blue light, operates in the trimeric but not in the monomeric complex, and results in singlet excitation quenching leading to thermal energy dissipation.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessiondgl2i738640iso1n67bivs2lsrkalkcd): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once