Postepy Biochem
September 2024
U1 snRNP (U1 small nuclear ribonucleoprotein) is a nuclear ribonucleoprotein complex involved mainly in pre-mRNA splicing, which is a key regulatory process in the eukaryotic gene expression pathway, but also in the process of preventing premature transcription termination (telescripting). U1 snRNP interacts directly with RNA polymerase II, thereby influencing the synthesis and maturation of transcripts in the cell nucleus, including the formation of the 3' end of mRNA and polyadenylation. At the level of cell physiology, it regulates the functioning of mitochondria and energy metabolism.
View Article and Find Full Text PDFCytoplasmic mRNA decay is effected by exonucleolytic degradation in either the 5' to 3' or 3' to 5' direction. Pervasive terminal uridylation is implicated in mRNA degradation, however, its functional relevance for bulk mRNA turnover remains poorly understood. In this study, we employ genome-wide 3'-RACE (gw3'-RACE) in the model system fission yeast to elucidate the role of uridylation in mRNA turnover.
View Article and Find Full Text PDFBackground: NOL12 5'-3' exoribonucleases, conserved among eukaryotes, play important roles in pre-rRNA processing, ribosome assembly and export. The most well-described yeast counterpart, Rrp17, is required for maturation of 5.8 and 25S rRNAs, whereas human hNOL12 is crucial for the separation of the large (LSU) and small (SSU) ribosome subunit rRNA precursors.
View Article and Find Full Text PDFThe DXO family of proteins participates in eukaryotic mRNA 5'-end quality control, removal of non-canonical NAD+ cap and maturation of fungal rRNA precursors. In this work, we characterize the Arabidopsis thaliana DXO homolog, DXO1. We demonstrate that the plant-specific modification within the active site negatively affects 5'-end capping surveillance properties of DXO1, but has only a minor impact on its strong deNADding activity.
View Article and Find Full Text PDFThe role of the nucleus of a eukaryotic cell during gene expression is not only limited to transcription and RNA processing but also includes the initial stages of RNA surveillance. All of these processes, and more precisely, transcription elongation and termination, 5'-end RNA maturation, and the removal of processing intermediates and aberrant molecules, require the activity of the nuclear 5'-3' exoribonuclease Rat1/Xrn2. This protein, together with its cytoplasmic counterpart, Xrn1, constitutes a highly conserved eukaryotic family of nucleases, whose roles exceed participation in RNA metabolism alone.
View Article and Find Full Text PDFThree Rat1/Xrn2 homologues exist in Arabidopsis thaliana: nuclear AtXRN2 and AtXRN3, and cytoplasmic AtXRN4. The latter has a role in degrading 3' products of miRNA-mediated mRNA cleavage, whereas all three proteins act as endogenous post-transcriptional gene silencing suppressors. Here we show that, similar to yeast nuclear Rat1, AtXRN2 has a role in ribosomal RNA processing.
View Article and Find Full Text PDF