Publications by authors named "Monika Wittner"

EZH2, the enzymatic component of PRC2, has been identified as a key factor in hematopoiesis. EZH2 loss-of-function mutations have been found in myeloproliferative neoplasms, particularly in myelofibrosis, but the precise function of EZH2 in megakaryopoiesis is not fully delineated. Here, we show that EZH2 inhibition by small molecules and short hairpin RNA induces megakaryocyte (MK) commitment by accelerating lineage marker acquisition without change in proliferation.

View Article and Find Full Text PDF

Bone marrow (BM) niche cells help to keep adult hematopoietic stem cells (HSCs) in a quiescent state via secreted factors and induction of cell-cycle inhibitors. Here, we demonstrate that the adapter protein CABLES1 is a key regulator of long-term hematopoietic homeostasis during stress and aging. Young mice lacking Cables1 displayed hyperproliferation of hematopoietic progenitor cells.

View Article and Find Full Text PDF

Hematopoietic stem cells (HSCs) residing in the bone marrow (BM) accumulate during aging but are functionally impaired. However, the role of HSC-intrinsic and -extrinsic aging mechanisms remains debated. Megakaryocytes promote quiescence of neighboring HSCs.

View Article and Find Full Text PDF

Antibody-drug conjugates (ADCs) are a new class of therapeutics that use antibodies to deliver potent cytotoxic drugs selectively to cancer cells. CD203c, an ecto-nucleotide pyrophosphatase-phosphodiesterase 3, is overexpressed on neoplastic mast cells (MCs) in systemic mastocytosis (SM), thus representing a promising target for antibody-mediated therapy. In this study, we have found that human neoplastic MC lines (ROSA and ROSA), which express high levels of CD203c, are highly and specifically sensitive to the antiproliferative effects of an ADC against CD203c (AGS-16C3F).

View Article and Find Full Text PDF

The CXCL12/CXCR4 signaling exerts a dominant role in promoting hematopoietic stem and progenitor cell (HSPC) retention and quiescence in bone marrow. Gain-of-function mutations that affect homologous desensitization of the receptor have been reported in the WHIM Syndrome (WS), a rare immunodeficiency characterized by lymphopenia. The mechanisms underpinning this remain obscure.

View Article and Find Full Text PDF

Hematopoietic stem cells (HSCs) undergo self-renewal to maintain hematopoietic homeostasis for lifetime, which is regulated by the bone marrow (BM) microenvironment. The chemokine receptor CXCR4 and its ligand CXCL12 are critical factors supporting quiescence and BM retention of HSCs. Here, we report an unknown function of CXCR4/CXCL12 axis in the protection of HSCs against oxidative stress.

View Article and Find Full Text PDF

JAK2 activation is the driver mechanism in negative myeloproliferative neoplasms (MPN). These diseases are characterized by an abnormal retention of hematopoietic stem cells within the bone marrow microenvironment and their increased trafficking to extramedullary sites. The CXCL12/CXCR4 axis plays a central role in hematopoietic stem cell/ progenitor trafficking and retention in hematopoietic sites.

View Article and Find Full Text PDF

As an intracellular second messenger, nitric oxide (NO) is increasingly implicated in the control of transcriptional machinery and gene expression. Here, we show that cell surface expression of CXCR4 on CD34(+) cells was increased in a dose- and time-dependent manner in response to NO donors. Augmented surface expression was correlated with an increase in CXCR4 mRNA level.

View Article and Find Full Text PDF

The physiologic role of CXCR4 on hematopoietic stem/progenitor cells (HSPCs) is not fully understood. Here, we show that radioprotection of lethally irradiated mice by embryonic day 14.5 (E14.

View Article and Find Full Text PDF

To gain a molecular understanding of kidney functions, we established a high-resolution map of gene expression patterns in the human kidney. The glomerulus and seven different nephron segments were isolated by microdissection from fresh tissue specimens, and their transcriptome was characterized by using the serial analysis of gene expression (SAGE) method. More than 400,000 mRNA SAGE tags were sequenced, making it possible to detect in each structure transcripts present at 18 copies per cell with a 95% confidence level.

View Article and Find Full Text PDF

Micropuncture studies of the distal nephron and measurements of Na,K-ATPase activity in microdissected collecting tubules have suggested that renal retention of sodium in puromycin aminonucleoside (PAN) nephrotic rats originates in the collecting duct. The present study demonstrated this hypothesis by in vitro microperfusion and showed that amiloride was able to restore sodium balance. Indeed, isolated perfused cortical collecting ducts from PAN-treated rats exhibited an abnormally high transepithelial sodium reabsorption that was abolished by amiloride, and in vivo administration of amiloride fully prevented decreased urinary sodium excretion and positive sodium balance in nephrotic rats.

View Article and Find Full Text PDF