Publications by authors named "Monika Vrajova"

Methamphetamine is a potent and highly addictive psychostimulant, and one of the most widely used illicit drugs. Over recent years, its global usage and seizure have been on a rapid rise, with growing detrimental effects on mental and physical health, and devastating psychosocial impact pressing for intervention. Among the unwanted effects of methamphetamine, acute and long-term sleep impairments are of major concern, posing a significant therapeutic challenge, and a cause of addiction relapse.

View Article and Find Full Text PDF

Chronic methamphetamine (METH) abuse has been shown to elicit strong neurotoxic effects. Yet, with an increasing number of children born to METH abusing mothers maturing into adulthood, one important question is how far do the neurotoxic effects of METH alter various neurotransmitter systems in the adult METH-exposed offspring. The purpose of this study was to investigate long-term trans-generational neurochemical changes, following prenatal METH exposure, in the adult Wistar rat brain.

View Article and Find Full Text PDF

Methamphetamine (MA) is the most commonly used psychostimulant drug, the chronic abuse of which leads to neurodegenerative changes in the brain. The global use of MA is increasing, including in pregnant women. Since MA can cross both placental and haematoencephalic barriers and is also present in maternal milk, children of chronically abused mothers are exposed prenatally as well as postnatally.

View Article and Find Full Text PDF

There is accumulating evidence that methamphetamine (MA) is a widely abused drug popular among pregnant women. MA exposure is associated with changes in the function of neurotransmitter systems, namely the dopaminergic, serotonergic and glutamatergic systems. Since N-methyl-D-aspartate receptors (NMDA) are affected by MA-induced glutamate release, we assessed the expression of NMDAR subunits (NR1, NR2A, and NR2B) and postsynaptic density protein 95 (PSD-95), which is connected with NMDAR.

View Article and Find Full Text PDF

It has been suggested that Nogo-A, a myelin-associated protein, could play a role in the pathogenesis of schizophrenia and that Nogo-A-deficient rodents could serve as an animal model for schizophrenic symptoms. Since changes in brain laterality are typical of schizophrenia, we investigated whether Nogo-A-deficient rats showed any signs of disturbed asymmetry in cortical N-methyl-d-aspartate (NMDA) receptor-nitric oxide synthase (NOS) pathway, which is reported as dysfunctional in schizophrenia. In particular, we measured separately in the right and left hemisphere of young and old Nogo-A-deficient male rats the expression of NMDA receptor subunits (NR1, NR2A, and NR2B in the frontal cortex) and activities of NOS isoforms [neuronal (nNOS), endothelial (eNOS), and inducible (iNOS) in the parietal cortex].

View Article and Find Full Text PDF

Multifunctional mitochondrial enzyme 17β-hydroxysteroid dehydrogenase type 10 plays a role in the development of Alzheimer's disease. However, changes in its expression in the brain or cerebrospinal fluid are not fully specific for this type of dementia. Our previous study revealed that complexes of the enzyme and amyloid β in cerebrospinal fluid could serve as a more specific biomarker of Alzheimer's disease than either the enzyme or amyloid β individually when compared to autoimmune multiple sclerosis.

View Article and Find Full Text PDF

Objective: The regulator of G-protein signaling (RGS) molecules represent a class of proteins that modulate the signaling activity of G-protein coupled receptors. Regulator of G-protein signaling 4 (RGS4) is of particular interest in schizophrenia due to reported downregulation of RGS4 transcripts in schizophrenia as well as a connection between RGS4 and a number of receptors implicated in schizophrenia. The mechanism of RGS4 involvement in the pathophysiology of this illness is not clear.

View Article and Find Full Text PDF

There is accumulating evidence that disturbances in N-methyl-D: -aspartate receptor (NMDA-R) functioning are associated with the pathogenesis of schizophrenia. To assess actual changes in the expression of the GluN1 subunit and its isoforms, we measured absolute differences in the levels of mRNA/protein for panGluN1 (eight isoforms altogether) as well as the mRNA individual isoforms in the postmortem left/right hippocampus of patients with schizophrenia in comparison with non-psychiatric subjects. There were no significant differences in the panGluN1 subunit mRNA expression, but the absolute left/right differences were much more pronounced in the patients with schizophrenia.

View Article and Find Full Text PDF

The research of the glutamatergic system in schizophrenia has advanced with the use of non-competitive antagonists of glutamate NMDA receptors (phencyclidine, ketamine, and dizocilpine), which change both human and animal behaviour and induce schizophrenia-like manifestations. Models based on both acute and chronic administration of these substances in humans and rats show phenomenological validity and are suitable for searching for new substances with antipsychotic effects. Nevertheless, pathophysiology of schizophrenia remains unexplained.

View Article and Find Full Text PDF