A new high field spectrometer has been built to extend the capabilities of the β-detected nuclear magnetic resonance (β-NMR) facility at TRIUMF. This new beamline extension allows β-NMR spectroscopy to be performed with fields up to 200 mT parallel to a sample's surface (perpendicular to the ion beam), allowing depth-resolved studies of local electromagnetic fields with spin polarized probes at a much higher applied magnetic field than previously available in this configuration. The primary motivation and application is to allow studies of superconducting radio frequency (SRF) materials close to the critical fields of Nb metal, which is extensively used to fabricate SRF cavities.
View Article and Find Full Text PDFThe complexation of Mg with adenosine 5'-triphosphate (ATP) is omnipresent in biochemical energy conversion, but is difficult to interrogate directly. Here we use the spin- β-emitter Mg to study Mg -ATP complexation in 1-ethyl-3-methylimidazolium acetate (EMIM-Ac) solutions using β-radiation-detected nuclear magnetic resonance (β-NMR). We demonstrate that (nuclear) spin-polarized Mg, following ion-implantation from an accelerator beamline into EMIM-Ac, binds to ATP within its radioactive lifetime before depolarizing.
View Article and Find Full Text PDFWe investigated the depth, temperature, and molecular-weight (MW) dependence of the γ-relaxation in polystyrene glasses using implanted Li and β-detected nuclear magnetic resonance. Measurements were performed on thin films with MW ranging from 1.1 to 641 kg/mol.
View Article and Find Full Text PDFOne of the key components of radiopharmaceuticals for targeting imaging and therapy is a stable bifunctional chelating system to attach radionuclides to selective delivery systems. After-effects of radioactive decay can cause the release of a radioactive isotope from its chelation agent. Perturbed angular correlation (PAC) of γ-rays has become a unique technique to study the behavior of complexes formed between a chelating agent and radionuclide (in real time) over a relevant range of concentrations (10 M).
View Article and Find Full Text PDFNMR spectra of Mg2+ ions in ionic liquids were recorded using a highly sensitive variant of NMR spectroscopy known as β-NMR. The β-NMR spectra of MgCl2 in EMIM-Ac and EMIM-DCA compare favourably with conventional NMR, and exhibit linewidths of ∼3 ppm, allowing for discrimination of species with oxygen and nitrogen coordination.
View Article and Find Full Text PDFNanosecond ligand exchange dynamics at metal sites within proteins is essential in catalysis, metal ion transport, and regulatory metallobiochemistry. Herein we present direct observation of the exchange dynamics of water at a Cd binding site within two de novo designed metalloprotein constructs using Cd perturbed angular correlation (PAC) of γ-rays and Cd NMR spectroscopy. The residence time of the Cd-bound water molecule is tens of nanoseconds at 20 °C in both proteins.
View Article and Find Full Text PDFMetal-ion-responsive transcriptional regulators within the MerR family effectively discriminate between mono- and divalent metal ions. Herein we address the origin of the specificity of the CueR protein for monovalent metal ions. Several spectroscopic techniques were employed to study Ag(I) , Zn(II) , and Hg(II) binding to model systems encompassing the metal-ion-binding loop of CueR from E.
View Article and Find Full Text PDFDesigned metal ion binding peptides offer a variety of applications in both basic science as model systems of more complex metalloproteins, and in biotechnology, e.g. in bioremediation of toxic metal ions, biomining or as artificial enzymes.
View Article and Find Full Text PDFFurin-dependent maturation of the BRI2 protein generates the Bri2-23 fragment that is able to arrest the aggregation of amyloidβ, the peptide implicated in Alzheimer's disease (AD). Bri2-23 contains cysteines at positions 5 and 22, which are likely to bind to metal ions such as Cu(i). Metal ions may play a role in the etiology of neurodegenerative disorders such as AD, and in this work we explore the metal ion induced folding and aggregation of Bri2-23 using Hg(ii) and Ag(i) as spectroscopic probes with structural and ligand preferences similar to those of Cu(i), while not displaying redox activity under the experimental conditions.
View Article and Find Full Text PDFβ-nuclear magnetic resonance (NMR) spectroscopy is highly sensitive compared to conventional NMR spectroscopy, and may be applied for several elements across the periodic table. β-NMR has previously been successfully applied in the fields of nuclear and solid-state physics. In this work, β-NMR is applied, for the first time, to record an NMR spectrum for a species in solution.
View Article and Find Full Text PDFAlthough metal ion homeostasis in cells is often mediated through metallochaperones, there are opportunities for toxic metals to be sequestered through the existing transport apparatus. Proper trafficking of Cu(I) in human cells is partially achieved through complexation by HAH1, the human metallochaperone responsible for copper delivery to the Wilson and Menkes ATPase located in the trans-Golgi apparatus. In addition to binding copper, HAH1 strongly complexes Hg(II), with the X-ray structure of this complex previously described.
View Article and Find Full Text PDF(204m)Pb perturbed angular correlation of γ-rays (PAC) spectroscopy has been applied successfully for the first time to detect the nuclear quadrupole interaction in a lead(II) coordination compound in a molecular crystal [tetraphenylarsonium lead(II) isomaleonitriledithiolate ([AsPh(4)](4)[Pb(2)(i-mnt)(4)])]. The recorded parameters from a powder crystalline sample are ν(Q) = 0.178(1) GHz and η = 0.
View Article and Find Full Text PDFA de novo protein design strategy provides a powerful tool to elucidate how heavy metals interact with proteins.Cysteine derivatives of the TRI peptide family (Ac-G(LKALEEK)4G-NH2) have been shown to bind heavy metals in an unusual trigonal geometry. Our present objective was to design binding sites in R-helical scaffolds that are able to form higher coordination number complexes with Cd(II) and Hg(II).
View Article and Find Full Text PDF