Publications by authors named "Monika Schmoll"

The filamentous ascomycete Trichoderma reesei, known for its prolific cellulolytic enzyme production, recently also gained attention for its secondary metabolite synthesis. Both processes are intricately influenced by environmental factors like carbon source availability and light exposure. Here, we explore the role of the transcription factor STE12 in regulating metabolic pathways in T.

View Article and Find Full Text PDF

Trichoderma spp. are free-living fungi present in virtually all terrestrial ecosystems. These soil fungi can stimulate plant growth and increase plant nutrient acquisition of macro- and micronutrients and water uptake.

View Article and Find Full Text PDF

The genus is among the best studied groups of filamentous fungi, largely because of its high relevance in applications from agriculture to enzyme biosynthesis to biofuel production. However, the physiological competences of these fungi, that led to these beneficial applications are intriguing also from a scientific and ecological point of view. This review therefore summarizes recent developments in studies of fungal genomes, updates on previously started genome annotation efforts and novel discoveries as well as efforts towards bioprospecting for enzymes and bioactive compounds such as cellulases, enzymes degrading xenobiotics and metabolites with potential pharmaceutical value.

View Article and Find Full Text PDF

Background: Adaptation to complex, rapidly changing environments is crucial for evolutionary success of fungi. The heterotrimeric G-protein pathway belongs to the most important signaling cascades applied for this task. In Trichoderma reesei, enzyme production, growth and secondary metabolism are among the physiological traits influenced by the G-protein pathway in a light dependent manner.

View Article and Find Full Text PDF

The filamentous fungus Trichoderma reesei is a prolific producer of plant cell wall degrading enzymes, which are regulated in response to diverse environmental signals for optimal adaptation, but also produces a wide array of secondary metabolites. Available carbon source and light are the strongest cues currently known to impact secreted enzyme levels and an interplay with regulation of secondary metabolism became increasingly obvious in recent years. While cellulase regulation is already known to be modulated by different mitogen activated protein kinase (MAPK) pathways, the relevance of the light signal, which is transmitted by this pathway in other fungi as well, is still unknown in T.

View Article and Find Full Text PDF

Sensing the environment and interpretation of the received signals are crucial competences of living organisms in order to properly adapt to their habitat, succeed in competition and to reproduce. G-protein coupled receptors (GPCRs) are members of a large family of sensors for extracellular signals and represent the starting point of complex signaling cascades regulating a plethora of intracellular physiological processes and output pathways in fungi. In Trichoderma spp.

View Article and Find Full Text PDF

Four new leucine-derived cytochalasans, possessing a 5,6,5,8-ring () and a 5,6,11-ring core (-), were isolated from a cultivated endophytic fungus sp. strain WH2D4 (Xylariaceae). This fungus was isolated from leaves of the neotropical tree species (Sw.

View Article and Find Full Text PDF

Fungi of the genus are of high importance for biotechnological applications, in biocontrol and for production of homologous and heterologous proteins. However, sexual crossing under laboratory conditions has so far only been achieved with the species , which was so far only isolated from tropical regions. Our isolation efforts aimed at the collection of strains from Austrian soils surprisingly also yielded 12 strains of the species , which was previously not known to occur in Europe.

View Article and Find Full Text PDF

Changing environmental conditions are of utmost importance for regulation of secondary metabolism in fungi. Different environmental cues including the carbon source, light and the presence of a mating partner can lead to altered production of compounds. Thereby, the heterotrimeric G-protein pathway is of major importance for sensing and adjustment of gene regulation.

View Article and Find Full Text PDF

Transformation enables the transfer of DNA into fungal cells for subsequent integration into the genome. Due to its versatility in industrial application, transformation is of utmost importance in Trichoderma reesei and hence continuously optimized. As one of the most crucial obstacles in fungal transformation efforts, removal of the cell wall is required to efficiently target genome modification cassettes to the genome.

View Article and Find Full Text PDF

The soil-borne fungus is the most common causal agent of black-foot disease in Europe. However, there is a lack of understanding on how this fungus can provoke plant symptoms. In this study, we sequenced, annotated and analyzed the genomes of three isolates of collected from asymptomatic vine, weed and soil.

View Article and Find Full Text PDF

The necrotrophic mycoparasite is a biological pest control agent frequently applied in agriculture for the protection of plants against fungal phytopathogens. One of the main secondary metabolites produced by this fungus is 6-pentyl-α-pyrone (6-PP). 6-PP is an organic compound with antifungal and plant growth-promoting activities, whose biosynthesis was previously proposed to involve a lipoxygenase (Lox).

View Article and Find Full Text PDF

strains used in biological control products usually exhibit high efficiency in the control of plant diseases. However, their behavior under field conditions is difficult to predict. In addition, the potential of indigenous strains has been poorly assayed as well as their possible behavior as endophytes.

View Article and Find Full Text PDF

The complex environment of fungi requires a delicate balance between the efforts to acquire nutrition, to reproduce, and to fend off competitors. In , an interrelationship between regulation of enzyme gene expression and secondary metabolism was shown. In this study, we investigated the physiological relevance of the unique YPK1-type kinase USK1 of .

View Article and Find Full Text PDF

Regulation of plant cell wall degradation is of utmost importance for understanding the carbon cycle in nature, but also to improve industrial processes aimed at enzyme production for next generation biofuels. Thereby, the transcription factor networks in different fungi show conservation as well as striking differences, particularly between Trichoderma reesei and Neurospora crassa. Here, we aimed to gain insight into the function of the transcription factors CLR1 and CLR2 in T.

View Article and Find Full Text PDF

Fungal plant cell wall degradation processes are governed by complex regulatory mechanisms, allowing the organisms to adapt their metabolic program with high specificity to the available substrates. While the uptake of representative plant cell wall mono- and disaccharides is known to induce specific transcriptional and translational responses, the processes related to early signal reception and transduction remain largely unknown. A fast and reversible way of signal transmission are post-translational protein modifications, such as phosphorylations, which could initiate rapid adaptations of the fungal metabolism to a new condition.

View Article and Find Full Text PDF

Background: represents a model system for investigation of plant cell wall degradation and its connection to light response. The cyclic adenosine monophosphate pathway (cAMP pathway) plays an important role in both physiological outputs, being crucial for regulation of photoreceptor function as well as for cellulase regulation on different carbon sources. Phosphorylation of photoreceptors and of the carbon catabolite repressor CRE1 was shown in ascomycetes, indicating a relevance of protein kinase A in regulation of the target genes of these transcription factors as well as an impact on regulation of induction specific genes.

View Article and Find Full Text PDF

Trichoderma reesei represents one of the most prolific producers of plant cell wall degrading enzymes. Recent research showed broad regulation by phosphorylation in T. reesei, including important transcription factors involved in cellulase regulation.

View Article and Find Full Text PDF

Background: Filamentous fungi have evolved to succeed in nature by efficient growth and degradation of substrates, but also due to the production of secondary metabolites including mycotoxins. For Trichoderma reesei, as a biotechnological workhorse for homologous and heterologous protein production, secondary metabolite secretion is of particular importance for industrial application. Recent studies revealed an interconnected regulation of enzyme gene expression and carbon metabolism with secondary metabolism.

View Article and Find Full Text PDF

Trichoderma reesei represents one of the most prolific producers of homologous and heterologous proteins. Discovery of the photoreceptor ENV1 as a regulator of cellulase gene expression initiated analysis of light response pathways and their physiological relevance for T. reesei.

View Article and Find Full Text PDF

The topic of 'fungal stress' is central to many important disciplines, including medical mycology, chronobiology, plant and insect pathology, industrial microbiology, material sciences, and astrobiology. The International Symposium on Fungal Stress (ISFUS) brought together researchers, who study fungal stress in a variety of fields. The second ISFUS was held in May 8-11 2017 in Goiania, Goiás, Brazil and hosted by the Instituto de Patologia Tropical e Saúde Pública at the Universidade Federal de Goiás.

View Article and Find Full Text PDF

Background: is one of the most frequently used filamentous fungi in industry for production of homologous and heterologous proteins. The ability to use sexual crossing in this fungus was discovered several years ago and opens up new perspectives for industrial strain improvement and investigation of gene regulation.

Results: Here we investigated the female sterile strain QM6a in comparison to the fertile isolate CBS999.

View Article and Find Full Text PDF

(syn. ) is the model organism for industrial production of plant cell wall degradating enzymes. The integration of light and nutrient signals for adaptation of enzyme production in emerged as an important regulatory mechanism to be tackled for strain improvement.

View Article and Find Full Text PDF