Visual working memory (VWM) is the ability to actively maintain visual information over short periods of time and is strongly related to global fluid intelligence and overall cognitive ability. In our study, we used two indices of visual working memory capacity: the behavioral estimate of capacity (K) and contralateral delay activity (CDA) in order to check whether training in a Real-Time Strategy (RTS) video game StarCraft II can influence the VWM capacity measured by the change detection task. We also asked a question whether individual differences in behavioral and psychophysiological indices of VWM can predict the effectiveness of video game training.
View Article and Find Full Text PDFThe impact of action videogame playing on cognitive functioning is the subject of debate among scientists, with many studies showing superior performance of players relative to non-players on a number of cognitive tasks. Moreover, the exact role of individual differences in the observed effects is still largely unknown. In our Event-Related Potential (ERP) study we investigated whether training in a Real Time Strategy (RTS) video game StarCraft II can influence the ability to deploy visual attention measured by the Attentional Blink (AB) task.
View Article and Find Full Text PDFIt is unclear why some people learn faster than others. We performed two independent studies in which we investigated the neural basis of real-time strategy (RTS) gaming and neural predictors of RTS game skill acquisition. In the first (cross-sectional) study, we found that experts in the RTS game StarCraft II (SC2) had a larger lenticular nucleus volume (LNV) than non-RTS players.
View Article and Find Full Text PDF