Publications by authors named "Monika Mis"

Article Synopsis
  • Optical pooled screening (OPS) is a method that connects images of cells with genetic changes, but it previously had limitations in its ability to analyze complex data in cancer cell lines.
  • The new technology, PerturbView, improves OPS by amplifying genetic barcodes for more detailed and varied phenotype analysis across different biological systems, including stem cells and immune cells.
  • PerturbView has unveiled both known and new regulatory mechanisms in immune pathways, and it can be integrated with spatial transcriptomics, enhancing the potential for comprehensive studies of cellular behaviors in complex tissue environments.
View Article and Find Full Text PDF

FBXW7, which encodes a substrate-specific receptor of an SCF E3 ligase complex, is a frequently mutated human tumor suppressor gene known to regulate the post-translational stability of various proteins involved in cellular proliferation. Here, using genome-wide CRISPR screens, we report a novel synthetic lethal genetic interaction between FBXW7 and CCNL1 and describe CCNL1 as a new substrate of the SCF-FBXW7 E3 ligase. Further analysis showed that the CCNL1-CDK11 complex is critical at the G2-M phase of the cell cycle since defective CCNL1 accumulation, resulting from FBXW7 mutation, leads to shorter mitotic time.

View Article and Find Full Text PDF

The AKT kinases have emerged as promising therapeutic targets in oncology and both allosteric and ATP-competitive AKT inhibitors have entered clinical investigation. However, long-term efficacy of such inhibitors will likely be challenged by the development of resistance. We have established prostate cancer models of acquired resistance to the allosteric inhibitor MK-2206 or the ATP-competitive inhibitor ipatasertib following prolonged exposure.

View Article and Find Full Text PDF

COVID-19 is a respiratory illness caused by a novel coronavirus called SARS-CoV-2. The viral spike (S) protein engages the human angiotensin-converting enzyme 2 (ACE2) receptor to invade host cells with ~10-15-fold higher affinity compared to SARS-CoV S-protein, making it highly infectious. Here, we assessed if ACE2 polymorphisms can alter host susceptibility to SARS-CoV-2 by affecting this interaction.

View Article and Find Full Text PDF

Activation of Wnt signaling entails βcatenin protein stabilization and translocation to the nucleus to regulate context-specific transcriptional programs. The majority of colorectal cancers (CRCs) initiate following APC mutations, resulting in Wnt ligand-independent stabilization and nuclear accumulation of βcatenin. The mechanisms underlying βcatenin nucleocytoplasmic shuttling remain incompletely defined.

View Article and Find Full Text PDF

Secreted Wnt proteins regulate development and adult tissue homeostasis by binding and activating cell-surface Frizzled receptors and co-receptors including LRP5/6. The hydrophobicity of Wnt proteins has complicated their purification and limited their use in basic research and as therapeutics. We describe modular tetravalent antibodies that can recruit Frizzled and LRP5/6 in a manner that phenocopies the activities of Wnts both in vitro and in vivo.

View Article and Find Full Text PDF

The ability to perturb genes in human cells is crucial for elucidating gene function and holds great potential for finding therapeutic targets for diseases such as cancer. To extend the catalog of human core and context-dependent fitness genes, we have developed a high-complexity second-generation genome-scale CRISPR-Cas9 gRNA library and applied it to fitness screens in five human cell lines. Using an improved Bayesian analytical approach, we consistently discover 5-fold more fitness genes than were previously observed.

View Article and Find Full Text PDF

The identification of ubiquitin E3 ligase substrates has been challenging, due in part to low-affinity, transient interactions, the rapid degradation of targets and the inability to identify proteins from poorly soluble cellular compartments. SCF(β-TrCP1) and SCF(β-TrCP2) are well-studied ubiquitin E3 ligases that target substrates for proteasomal degradation, and play important roles in Wnt, Hippo, and NFκB signaling. Combining 26S proteasome inhibitor (MG132) treatment with proximity-dependent biotin labeling (BioID) and semiquantitative mass spectrometry, here we identify SCF(β-TrCP1/2) interacting partners.

View Article and Find Full Text PDF

Mdm2 and MdmX are important negative regulators of the tumor suppressor p53. Structurally homologous Mdm2 and MdmX inhibit p53 by directly blocking p53 transcriptional activation. Mdm2 also modifies and targets p53 for 26S proteasome dependent protein degradation through E3 ligase activity mediated by its C-terminal RING domain.

View Article and Find Full Text PDF