Background: Sensitivity of breast tumors to anticancer drugs depends upon dynamic interactions between epithelial tumor cells and their microenvironment including stromal cells and extracellular matrix. To study drug-sensitivity within different compartments of an individual tumor ex vivo, culture models directly established from fresh tumor tissues are absolutely essential.
Methods: We prepared 0.
Background: The pulmonary residence time of inhaled glucocorticoids as well as their rate and extend of absorption into systemic circulation are important facets of their efficacy-safety profile. We evaluated a novel approach to elucidate the pulmonary absorption of an inhaled glucocorticoid. Our objective was to monitor and compare the combined process of drug particle dissolution, pro-drug activation and time course of initial distribution from human lung tissue into plasma for two different glucocorticoid formulations.
View Article and Find Full Text PDFPurpose: Breast cancer is composed of phenotypically diverse populations of cancer cells. The ability to form breast tumors has been shown by in vitro/in vivo studies to be restricted to epithelial tumor cells with CD44(+)/CD24(-/low) characteristics. Validation of these findings with respect to detection in clinical samples, prognosis, and clinical relevance is in demand.
View Article and Find Full Text PDFHMR 1826 (N-[4-beta-Glucuronyl-3-nitrobenzyl-oxycarbonyl]doxorubicin) is a nontoxic glucuronide prodrug from which active doxorubicin is released by beta-glucuronidase. Preclinical studies aimed at dose optimization of HMR 1826, based on intratumoral pharmacokinetics, are important to design clinical studies. Using an isolated perfused human lung model, the uptake of doxorubicin into normal tissue and tumors after perfusion with 133 microg/ml (n = 6), 400 microg/ml (n = 10), and 1200 microg/ml (n = 6) HMR 1826 was compared.
View Article and Find Full Text PDF