The gas and water vapor permeabilities of graphene-based membranes can be affected by the presence of different functional groups directly bound to the graphene network. In this work, one type of carboxylated graphene oxide (GO-COOH) and two types of graphene oxide synthesized i) under strong oxidative conditions directly from graphite (GO-1) and ii) under mild oxidative conditions from exfoliated graphene (GO-2) were used as precursors of self-standing membranes prepared with thicknesses in the range of 12-55 μm via slow-vacuum filtration preparation method. It was observed that the permeabilities for all tested gases decreased in order GO-2 > GO-1 > GO-COOH and depended on both the arrangement of graphene sheets and their functionalization.
View Article and Find Full Text PDFZeolites have been investigated as sorbents of heavy metals from water. Since graphene oxide was already reported as promising radionuclide sorbent, we developed composite materials containing both a synthetic zeolite (type A, P or Y) and graphene oxide to be multifunctional sorbents. The extension of multifunctionality of sorbents was done by presence of third component, exfoliated graphite, to have additional properties as conductivity.
View Article and Find Full Text PDFLaboratory synthesis of microsheets of titanium dioxide from titanyl sulfate involves the use of ammonia solution, whereas another inorganic base is most likely to be employed at the industrial level, as ammonia is a toxic agent and therefore should be avoided according to European Union (EU) regulations. Selected nontoxic bases such as sodium, potassium, and lithium hydroxides have been tested as an alternative to ammonia solution to obtain amorphous and crystalline TiO-based microsheets. The final products obtained at each step of the procedure (samples lyophilized and annealed at 230 and 800 °C) were analyzed with electron and atomic force microscopy, X-ray powder diffraction, thermal analysis, and Fourier transform infrared (FTIR) and Raman spectroscopies to determine their morphology and phase composition.
View Article and Find Full Text PDFTungsten-doped anatase was prepared by a thermal hydrolysis of aqueous solutions of peroxo complexes of titanium and tungsten. The synthesized samples included X-ray diffraction, high-resolution transmission electron microscopy, selected area electron diffraction, Raman spectroscopy, specific surface area, and porosity determination. W doping resulted in a decrease of the unit-cell volume of anatase at lower W contents and an increase at higher W contents.
View Article and Find Full Text PDF