The main purposes of this work are designing new hybrid structures based on alumina nanoporous membranes with specific metallosupramolecular structure as well as studies of their usefulness in nonlinear optics (NLO). The NLO studies of the hybrid material is performed on the basis of two methods: the first by the Maker fringe technique, where the second harmonic generation (SHG) signal is recorded by rotating the sample; and the second by SHG imaging microscopy, where the SHG signal is collected point by point on the sample surface. The enhanced SHG signals were obtained without the use of the corona poling method needed during the experiment on thin films in our previous works and clearly shows the efficiency of hybrid materials based on nanoporous membranes as promising materials in devices developed based on NLO.
View Article and Find Full Text PDFPhotonic metamaterials with properties unattainable in base materials are already beginning to revolutionize optical component design. However, their exceptional characteristics are often static, as artificially engineered into the material during the fabrication process. This limits their application for in-operando adjustable optical devices and active optics in general.
View Article and Find Full Text PDF