The phase- and phase-transition properties of glycerol-dipalmitate (GDP) bilayer patches are investigated using molecular dynamics simulations. This permits to characterize the influence of introducing a second aliphatic lipid tail by comparison to previously reported simulations of glycerol-1-monopalmitate (GMP). To this purpose, a set of 67 simulations (up to 300ns duration) of 2×8×8GDP bilayer patches are performed, considering the two GDP isomers glycerol-1,3-dipalmitate (13GDP) and glycerol-1,2-dipalmitate (12GDP; racemic), two hydration levels (12GDP only), and temperatures in the range 250-370K.
View Article and Find Full Text PDFThe effect of methanol on the phase and phase-transition properties of a 2×8×8 glycerol-1-monopalmitate bilayer patch is investigated using a series of 239 molecular dynamics simulations on the 180 ns timescale, considering methanol concentrations cM and temperatures T in the ranges 0-12.3M and 302-338 K, respectively. The results in the form of hysteresis-corrected transition temperatures Tm are compatible with the expected features of the biphasic effect, with a reversal concentration crev of about 5.
View Article and Find Full Text PDFThe occurrence of long-timescale motions in glycerol-1-monopalmitate (GMP) lipid bilayers is investigated based on previously reported 600 ns molecular dynamics simulations of a 2×8×8 GMP bilayer patch in the temperature range 302-338 K, performed at three different hydration levels, or in the presence of the cosolutes methanol or trehalose at three different concentrations. The types of long-timescale motions considered are: (i) the possible phase transitions; (ii) the precession of the relative collective tilt-angle of the two leaflets in the gel phase; (iii) the trans-gauche isomerization of the dihedral angles within the lipid aliphatic tails; and (iv) the flipping of single lipids across the two leaflets. The results provide a picture of GMP bilayers involving a rich spectrum of events occurring on a wide range of timescales, from the 100-ps range isomerization of single dihedral angles, via the 100-ns range of tilt precession motions, to the multi-μs range of phase transitions and lipid-flipping events.
View Article and Find Full Text PDFThe influence of the cosolutes trehalose and methanol on the structural, dynamic and thermodynamic properties of a glycerol-1-monopalmitate (GMP) bilayer and on its main transition temperature [Formula: see text] is investigated using atomistic molecular dynamics simulations (600 ns) of a GMP bilayer patch (2 × 8 × 8 lipids) at different temperatures in the range of 302 to 338 K and considering three different cosolute concentrations. Depending on the environment and temperature, these simulations present no or a single GL[Formula: see text]LC, LC[Formula: see text]GL or LC[Formula: see text]ID transition, where LC, GL and ID are the liquid crystal, gel and interdigitated phases, respectively. The trehalose molecules form a coating layer at the bilayer surface, promote the hydrogen-bonded bridging of the lipid headgroups, preserve the interaction of the headgroups with trapped water and induce a slight lateral expansion of the bilayer in the LC phase, observations that may have implications for the phenomenon of anhydrobiosis.
View Article and Find Full Text PDFEntropy is an important energetic quantity determining the progression of chemical processes. We propose a new approach to obtain hydration entropy directly from probability density functions in state space. We demonstrate the validity of our approach for a series of cations in aqueous solution.
View Article and Find Full Text PDF