Publications by authors named "Monika Krupova"

Adenosine is one of the building blocks of nucleic acids and other biologically important molecules. Spectroscopic methods have been among the most utilized techniques to study adenosine and its derivatives. However, most of them deal with adenosine in solution.

View Article and Find Full Text PDF

Cyclic peptides show a wide range of biological activities, among others as antibacterial agents. These peptides are often large and flexible with multiple chiral centers. The determination of the stereochemistry of molecules with multiple chiral centers is a challenging and important task in drug development.

View Article and Find Full Text PDF

The physical stability of peptide-based drugs is of great interest to the pharmaceutical industry. Glucagon-like peptide 1 (GLP-1) is a 31-amino acid peptide hormone, the analogs of which are frequently used in the treatment of type 2 diabetes. We investigated the physical stability of GLP-1 and its C-terminal amide derivative, GLP-1-Am, both of which aggregate into amyloid fibrils.

View Article and Find Full Text PDF

Invited for the cover of this issue are Valery Andrushchenko, Monika Krupová, and co-workers at the Institute of Organic Chemistry and Biochemistry (IOCB Prague) of the Czech Academy of Sciences. The image depicts a "crystal city" illuminated by "chiral suns" shining left- and right-circularly polarized light (L-CPL and R-CPL), which reveals differences in the structure of the chiral crystalline "skyscrapers". Designed by Tomáš Belloň @ IOCB Prague.

View Article and Find Full Text PDF

Vibrational circular dichroism (VCD) spectroscopy has been widely used to study (bio)molecules in solution. However, its solid-state applications have been restricted due to experimental limitations and artifacts. Having overcome some of them, the first VCD study of nucleoside crystals is now presented.

View Article and Find Full Text PDF

Amyloidal protein fibrils occur in many biological events, but their formation and structural variability are understood rather poorly. We systematically explore fibril polymorphism for polyglutamic acid (PGA), insulin and hen egg white lysozyme. The fibrils were grown in the presence of "seeds", that is fibrils of the same or different protein.

View Article and Find Full Text PDF

Chiroptical spectroscopy exploring the interaction of matter with polarized light provides many tools for molecular structure and interaction studies. Here, some recent discoveries are reviewed, primarily in the field of vibrational optical activity. Technological advances results in the development of more sensitive vibrational circular dichroism (VCD), Raman optical activity (ROA) or circular polarized luminescence (CPL) spectrometers.

View Article and Find Full Text PDF

Protein fibrils are involved in a number of biological processes. Because their structure is very complex and not completely understood, different spectroscopic methods are used to monitor different aspects of fibril structure. We have explored circularly polarized luminescence (CPL) induced in lanthanide compounds to indicate fibril growth and discriminate among fibril types.

View Article and Find Full Text PDF

This work reveals new structural relationships in the complex process of the interaction between activation receptors of natural killer cells (rat NKR-P1, human CD69) and novel bivalent carbohydrate glycomimetics. The length, glycosylation pattern and linker structure of receptor ligands were examined with respect to their ability to precipitate the receptor protein from solution, which simulates the in vivo process of receptor aggregation during NK cell activation. It was found that di-LacdiNAc triazole compounds show optimal performance, reaching up to 100% precipitation of the present protein receptors, and achieving high immunostimulatory activities without any tendency to trigger activation-induced apoptosis.

View Article and Find Full Text PDF