Interleukin (IL)-33 is a cytokine that appears to mediate fibrosis by signaling via its receptor ST2 (IL-33R/IL1RL1). It is also, however, a protein that after synthesis is sorted to the cell nucleus, where it appears to affect chromatin folding. Here we describe a novel role for nuclear IL-33 in regulating the fibroblast phenotype in murine kidney fibrosis driven by unilateral ureteral obstruction.
View Article and Find Full Text PDFFollowing a successful renal transplantation circulating markers of inflammation may remain elevated, and systemic inflammation is associated with worse clinical outcome in renal transplant recipients (RTRs). Vitamin D-receptor (VDR) activation is postulated to modulate inflammation and endothelial function. We aimed to explore if a synthetic vitamin D, paricalcitol, could influence systemic inflammation and immune activation in RTRs.
View Article and Find Full Text PDFObjective: Endothelial upregulation of adhesion molecules serves to recruit leukocytes to inflammatory sites and appears to be promoted by NOTCH1; however, current models based on interactions between active NOTCH1 and NF-κB components cannot explain the transcriptional selectivity exerted by NOTCH1 in this context.
Approach And Results: Observing that Cre/Lox-induced conditional mutations of endothelial Notch modulated inflammation in murine contact hypersensitivity, we found that IL (interleukin)-1β stimulation induced rapid recruitment of RELA (v-rel avian reticuloendotheliosis viral oncogene homolog A) to genomic sites occupied by NOTCH1-RBPJ (recombination signal-binding protein for immunoglobulin kappa J region) and that NOTCH1 knockdown reduced histone H3K27 acetylation at a subset of NF-κB-directed inflammatory enhancers.
Conclusions: Our findings reveal that NOTCH1 signaling supports the expression of a subset of inflammatory genes at the enhancer level and demonstrate how key signaling pathways converge on chromatin to coordinate the transition to an infla mmatory endothelial phenotype.
In stable renal transplant recipients with hyperparathyroidism, previous studies have indicated that vitamin D agonist treatment might have anti-proteinuric effects. Animal studies indicate possible anti-fibrotic and anti-inflammatory effects. Early introduction of paricalcitol in de novo renal transplant recipients might reduce proteinuria and prevent progressive allograft fibrosis.
View Article and Find Full Text PDFObjective: Interleukin (IL)-33 is a nuclear protein that is released from stressed or damaged cells to act as an alarmin. We investigated the effects of IL-33 on endothelial cells, using the prototype IL-1 family member, IL-1β, as a reference.
Methods And Results: Human umbilical vein endothelial cells were stimulated with IL-33 or IL-1β, showing highly similar phosphorylation of signaling molecules, induction of adhesion molecules, and transcription profiles.
Background: In addition to lowering cholesterol, statins are thought to beneficially modulate inflammation. Several chemokines including CXCL1/growth-related oncogene (GRO)-α, CXCL8/interleukin (IL)-8 and CCL2/monocyte chemoattractant protein (MCP)-1 are important in the pathogenesis of atherosclerosis and can be influenced by statin-treatment. Recently, we observed that atorvastatin-treatment alters the intracellular content and subcellular distribution of GRO-α in cultured human umbilical vein endothelial cells (HUVECs).
View Article and Find Full Text PDFThe molecular mechanisms that drive expression of the alarmin interleukin-33 (IL-33) in endothelial cells are unknown. Because nuclear IL-33 is a marker of endothelial cell quiescence (corroborated in this study by coexpression of cyclin-dependent kinase inhibitor p27(Kip1)), we hypothesized that Notch signaling might be involved in regulating IL-33 expression. Activation of Notch1 by immobilized Notch ligands was sufficient to induce nuclear IL-33 expression in cultured endothelial cells.
View Article and Find Full Text PDFInterleukin-33 (IL-33) is a novel member of the interleukin-1 family that induces mucosal pathology in vivo and may drive fibrosis development and angiogenesis. To address its potential role in inflammatory bowel disease, we explored its tissue expression in biopsy specimens from untreated ulcerative colitis patients, observing a 2.6-fold up-regulation of IL-33 mRNA levels, compared to controls.
View Article and Find Full Text PDFUsing immunohistochemistry with antibodies against the phosphoserine residues in both S6rp and 4E binding protein 1, we identified the activation of the mammalian target of rapamycin (mTORC)1 pathway in 29 cases of AIDS-related lymphoma. These cases represented a diverse spectrum of histological types of non-Hodgkin lymphoma (24 cases) and classic Hodgkin lymphoma (five cases). mTORC1 was also activated in the hyperplastic but not involuted follicles of HIV-associated lymphadenopathy in eight cases, supporting the notion that mTORC1 activation is a common feature of transformed lymphocytes irrespective of either their reactive or malignant phenotype.
View Article and Find Full Text PDFAmong the many oncogenic variants of the anaplastic lymphoma kinase (ALK), nucleophosmin 1 (NPM)/ALK fusion protein expressed in the subset of T-cell lymphoma (ALK(+)TCL) is currently the best characterized. NPM/ALK activates several signal transduction pathways, including PI3K/AKT, MEK/ERK, mTORC1, STAT3, and STAT5b. In turn, the pathways modulate expression and function of many genes and proteins involved in the key cellular functions such as proliferation, growth, survival, metabolism, and angiogenesis.
View Article and Find Full Text PDFIn this study, we demonstrate that malignant mature CD4(+) T lymphocytes derived from cutaneous T cell lymphomas (CTCL) variably display some aspects of the T regulatory phenotype. Whereas seven cell lines representing a spectrum of primary cutaneous T cell lymphoproliferative disorders expressed CD25 and TGF-beta, the expression of FOXP3 and, to a lesser degree, IL-10 was restricted to two CTCL cell lines that are dependent on exogenous IL-2. IL-2, IL-15, and IL-21, all of which signals through receptors containing the common gamma chain, induced expression of IL-10 in the IL-2-dependent cell lines as well as primary leukemic CTCL cells.
View Article and Find Full Text PDFIn this study, we compared the effects of interleukin-2 (IL-2), IL-15, and IL-21 on gene expression, activation of cell signaling pathways, and functional properties of cells derived from CD4+ cutaneous T-cell lymphoma (CTCL). Whereas both IL-2 and IL-15 modulated, in a CTCL cell line, the expression of >1,000 gene transcripts by at least 2-fold, IL-21 up-regulated <40 genes. All three cytokines induced tyrosine phosphorylation of Jak1 and Jak3 in CTCL cell lines and native leukemic (Sezary) cells.
View Article and Find Full Text PDFWe examined functional status, activation mechanisms, and biologic role of the mTORC1 signaling pathway in malignant CD4(+) T cells derived from the cutaneous T-cell lymphoma (CTCL). Whereas the spontaneously growing CTCL-derived cell lines displayed persistent activation of the TORC1 as well as the PI3K/Akt and MEK/ERK pathways, the IL-2-dependent cell lines activated the pathways in response to IL-2 and IL-15 but not IL-21. Activation of mTORC1 and MEK/ERK was nutrient dependent.
View Article and Find Full Text PDFIL-21, a common gamma-chain cytokine secreted by activated CD4+ T cells, influences both humoral and cell-mediated immune responses through the regulation of T, B, dendritic, and natural killer (NK) cells. Sézary syndrome is an advanced form of cutaneous T-cell lymphoma, a clonally derived malignancy of CD4+ T cells that is characterized by profound defects in host cellular immune function. As a modulator of both innate and adaptive immune responses, IL-21 could play an important role in augmenting cell-mediated immunity in these patients.
View Article and Find Full Text PDFProtein-tyrosine phosphatase SHP-1 is the key negative regulator of numerous signaling pathways. SHP-1 is expressed in the hematopietic and epithelial cells as two structurally similar mRNA transcripts controlled by two different promoters designated P2 and P1, respectively. Whereas the transcriptional regulation of the SHP-1 gene P1 promoter has been partially elucidated, the structure and functional control of the P2 promoter remain unknown despite the critical role played by SHP-1 in the normal and malignant lymphoid and other hematopoetic cells.
View Article and Find Full Text PDFThe mechanisms of malignant cell transformation mediated by the oncogenic, chimeric nucleophosmin/anaplastic lymphoma kinase (NPM/ALK) tyrosine kinase remain only partially understood. Here we report that the NPM/ALK-carrying T cell lymphoma (ALK+TCL) cells secrete IL-10 and TGF-beta and express FoxP3, indicating their T regulatory (Treg) cell phenotype. The secreted IL-10 suppresses proliferation of normal immune, CD3/CD28-stimulated peripheral blood mononuclear cells and enhances viability of the ALK+TCL cells.
View Article and Find Full Text PDFThe prognosis for patients with mantle cell lymphoma (MCL) is poor, and at present there is no truly effective therapy. Gene translocation-mediated constitutive expression of cyclin D1 seems to play the key role in the pathogenesis of MCL. Here we report that although 3 of 4 MCL cell lines expressed the recently identified, highly oncogenic cyclin D1b isoform, as well as the canonical cyclin D1a, 8 MCL patient samples expressed only the cyclin D1a protein despite expressing detectable cyclin D1b mRNA.
View Article and Find Full Text PDFTyrosine kinases play a fundamental role in cell proliferation, survival, adhesion, and motility and have also been shown to mediate malignant cell transformation. Here we describe constitutive expression of the protein tyrosine kinase Brk in a large proportion of cutaneous T-cell lymphomas and other transformed T- and B-cell populations. The kinase is expressed in the nuclear localization and activated state.
View Article and Find Full Text PDFThe purpose of this study was to determine the TNF-alpha-stimulatory effect of a novel immunomodulator 2-(1-adamantylamino)-6-methylpyridine (AdAMP) on normal and neoplastic human cells. In a panel of several human ovarian cancer cell lines, almost half of them spontaneously secreted significant amounts of TNF-alpha. When incubated with AdAMP, a 3-fold enhancement of TNF-alpha production by cells was observed.
View Article and Find Full Text PDFAberrant expression of the ALK tyrosine kinase as a chimeric protein with nucleophosmin (NPM) and other partners plays a key role in malignant cell transformation of T-lymphocytes and other cells. Here we report that two small-molecule, structurally related, quinazoline-type compounds, WHI-131 and WHI-154, directly inhibit enzymatic activity of NPM/ALK as demonstrated by in vitro kinase assays using a synthetic tyrosine-rich oligopeptide and the kinase itself as the substrates. The inhibition of NPM/ALK activity resulted in malignant T cells in suppression of their growth, induction of apoptosis and inhibition of tyrosine phosphorylation of STAT3, the key effector of the NPM/ALK-induced oncogenesis.
View Article and Find Full Text PDFThe study examines the preponderance and mechanism of mammalian target of rapamycin (mTOR) activation in three distinct types of transformed B lymphocytes that differ in expression of the EBV genome. All three types [EBV-immortalized cells that express a broad spectrum of the virus-encoded genes (type III latency; EBV+/III), EBV-positive cells that express only a subset of the EBV-encoded genes (EBV+/I), and EBV-negative, germinal center-derived cells (EBV-)] universally displayed activation of the mTOR signaling pathway. However, only the EBV+/III transformed B cells displayed also activation of the phosphatidylinositol 3-kinase (PI3K)/Akt pathway that is considered to be the key activator of mTOR and of the mitogen-activated protein kinase/extracellular signal-regulated kinase (ERK) kinase (MEK)/ERK pathway that coactivates one of the immediate targets of mTOR, p70 S6K1.
View Article and Find Full Text PDFProblem: The purpose of the study was to determine the role of T-cell apoptosis in extracellular matrix (ECM) environment in pregnancy maintenance in women with a history of recurrent spontaneous abortion (RSA).
Method Of Study: Thirty-nine non-pregnant women with the history of RSA (anatomic, genetic, endocrine and microbiologic causes were excluded) and 22 healthy women with the previous successful pregnancy outcome were studied. In addition, 21 women with the history of RSA were also studied at the beginning of their next pregnancy.
The immunomodulatory effects of a recently synthesized adamantane derivative of aminopyridine - 2-(1-adamantylamino)-6-methylpyridine (AdAMP) - were tested on normal and neoplastic cells in vitro. When incubated with TNF-alpha gene-transduced mouse melanoma cells (B78/TNF), AdAMP significantly enhanced basal production of TNF-alpha by these cells, both by "high" and "moderate" TNF-alpha-producer cells. A similar TNF-alpha production-enhancing effect was observed in cultures of human ovarian carcinoma cells (CAOV1) which spontaneously produce TNF-alpha but not in cultures of tumour cells incapable of TNF-alpha secretion.
View Article and Find Full Text PDFRecent data indicate that human T lymphocytes can adhere to elastin and respond to co-stimulatory signals of that protein. This reactivity is mediated by non-integrin receptor, elastin binding protein. In addition, another receptor belonging to integrin family may be also involved.
View Article and Find Full Text PDFFasL molecule expressed on activated T cells induces apoptosis in Fas-expressing cells. It is possible that apoptosis induced by FasL is involved in the process of allograft destruction brought about by infiltrating T cells. The aim of our study was to evaluate expression of FasL gene in peripheral blood T cells of renal allograft recipients (RAR).
View Article and Find Full Text PDF