Grand canonical Monte Carlo simulation results are reported for an electric double layer (EDL) modeled by a planar charged hard wall, hard sphere cations with an off-center charge, and spherical anions with a charge at the center of the sphere. The ion charge numbers are Z = +1 and Z = -1, and the diameter, d, of a hard sphere is the same for anions and cations. The ions are immersed in a solvent mimicked by a continuum dielectric medium at standard temperature.
View Article and Find Full Text PDFThe structure of a planar electric double layer formed by a 2:2 valency dimer electrolyte in the vicinity of a uniformly charged planar hard electrode is investigated using density functional theory and Monte Carlo simulations. The dimer electrolyte consists of a mixture of charged divalent dimers and charged divalent monomers in a dielectric continuum. A dimer is constructed by two tangentially tethered rigid spheres, one of which is divalent and positively charged and the other neutral, whereas the monomer is a divalent and negatively charged rigid sphere.
View Article and Find Full Text PDFThe effect of anisotropic ion shapes on the structure and the differential capacitance of an electric double layer in the electrolyte solution regime is studied using the density functional theory and Monte Carlo simulations. The double layer is modelled by a uniformly charged, non-polarizable planar electrode next to an electrolyte where the cation is a dimer consisting of two tangentially touching rigid spheres one of which is positively charged while the other is neutral, the anion is a negatively charged rigid sphere, and the solvent is a dielectric continuum. Numerical results are reported for monovalent electrolytes at room temperature for a series of electrolyte concentrations and varying electrode surface charge densities.
View Article and Find Full Text PDF