Background: The sodium channel and clathrin linker 1 gene () has been involved in the pathogenesis of various ciliopathy disorders such as Bardet-Biedl syndrome, orofaciodigital syndrome type IX, and Senior-Løken syndrome. Detailed exams are warranted to outline all clinical features. Here, we present a family with a milder phenotype of -related disease.
View Article and Find Full Text PDFNon-syndromic retinitis pigmentosa (NSRP) is a clinically and genetically heterogeneous group of disorders characterized by progressive degeneration of the rod and cone photoreceptors, often leading to blindness. The evolving association of syndromic genes to cause NSRP and the increasing role of intronic variants in explaining missing heritability in genetic disorders present challenges in establishing conclusive clinical and genetic diagnoses. This study sought to identify and validate the causative genetic variant(s) in a 13-year-old male initially diagnosed with NSRP.
View Article and Find Full Text PDFPurpose: The purpose of this study was to compare the natural history of visual function change in cohorts of patients affected with retinal degeneration due to biallelic variants in Bardet-Biedl syndrome genes: BBS1 and BBS10.
Methods: Patients were recruited from nine academic centers from six countries (Belgium, Canada, France, New Zealand, Switzerland, and the United States). Inclusion criteria were: (1) female or male patients with a clinical diagnosis of retinal dystrophy, (2) biallelic disease-causing variants in BBS1 or BBS10, and (3) measures of visual function for at least one visit.
Hemizygous pathogenic variants in lead to defective signal transmission from retinal photoreceptors to bipolar cells and cause incomplete congenital stationary night blindness in humans. Although the primary defect is at the terminal end of first-order neurons (photoreceptors), there is limited knowledge of higher-order neuronal changes (inner retinal) in this disorder. This study aimed to investigate inner retinal changes in -retinopathy by analyzing macular ganglion cell layer-inner plexiform layer (GCL-IPL) thickness and optic disc pallor in 22 subjects with molecularly confirmed -retinopathy.
View Article and Find Full Text PDFFLVCR1 encodes for a transmembrane heme exporter protein and it is known to cause a rare form of syndromic retinitis pigmentosa: posterior column ataxia with retinitis pigmentosa. Recently, the FLVCR1-associated phenotype has been expanded with sporadic reports of hereditary sensory-autonomic neuropathy or non-syndromic retinitis pigmentosa. Here, we report a 23-year- old female with early onset hypomyelinating sensory-autonomic neuropathy and retinitis pigmentosa.
View Article and Find Full Text PDFBackground: S-adenosylhomocysteine hydrolase deficiency due to pathologic variants in gene is a rare neurometabolic disease for which no eye phenotype has been documented. Pathologic variants in gene are known to cause a wide spectrum of autosomal recessive retinal diseases with Leber's congenital amaurosis as a most common. The aim of this study is to report co-inheritance of neurometabolic disease and eye disease in a pedigree.
View Article and Find Full Text PDF