Publications by authors named "Monika Julia Wolf"

Article Synopsis
  • Plasmacytoid dendritic cells (pDCs) are important for immune responses but are rare in blood and less effective in cancer, making their use in therapies difficult.
  • Researchers developed a new method to differentiate pDCs from cord blood stem cells using specific growth factors like SR-1 and GM-CSF, leading to a significant yield of functional pDCs.
  • The study found that these cord blood-derived pDCs closely resemble primary pDCs and can potentially enhance anti-tumor immune responses, making them promising candidates for cancer therapies.
View Article and Find Full Text PDF

Non-alcoholic fatty liver disease ranges from steatosis to non-alcoholic steatohepatitis (NASH), potentially progressing to cirrhosis and hepatocellular carcinoma (HCC). Here, we show that platelet number, platelet activation and platelet aggregation are increased in NASH but not in steatosis or insulin resistance. Antiplatelet therapy (APT; aspirin/clopidogrel, ticagrelor) but not nonsteroidal anti-inflammatory drug (NSAID) treatment with sulindac prevented NASH and subsequent HCC development.

View Article and Find Full Text PDF

Hepatocellular carcinoma (HCC), the fastest rising cancer in the United States and increasing in Europe, often occurs with nonalcoholic steatohepatitis (NASH). Mechanisms underlying NASH and NASH-induced HCC are largely unknown. We developed a mouse model recapitulating key features of human metabolic syndrome, NASH, and HCC by long-term feeding of a choline-deficient high-fat diet.

View Article and Find Full Text PDF

Increased expression of the chemokine CCL2 in tumor cells correlates with enhanced metastasis, poor prognosis, and recruitment of CCR2(+)Ly6C(hi) monocytes. However, the mechanisms driving tumor cell extravasation through the endothelium remain elusive. Here, we describe CCL2 upregulation in metastatic UICC stage IV colon carcinomas and demonstrate that tumor cell-derived CCL2 activates the CCR2(+) endothelium to increase vascular permeability in vivo.

View Article and Find Full Text PDF

The MAP3-kinase TGF-beta-activated kinase 1 (TAK1) critically modulates innate and adaptive immune responses and connects cytokine stimulation with activation of inflammatory signaling pathways. Here, we report that conditional ablation of TAK1 in liver parenchymal cells (hepatocytes and cholangiocytes) causes hepatocyte dysplasia and early-onset hepatocarcinogenesis, coinciding with biliary ductopenia and cholestasis. TAK1-mediated cancer suppression is exerted through activating NF-kappaB in response to tumor necrosis factor (TNF) and through preventing Caspase-3-dependent hepatocyte and cholangiocyte apoptosis.

View Article and Find Full Text PDF

Hepatitis B and C viruses (HBV and HCV) cause chronic hepatitis and hepatocellular carcinoma (HCC) by poorly understood mechanisms. We show that cytokines lymphotoxin (LT) alpha and beta and their receptor (LTbetaR) are upregulated in HBV- or HCV-induced hepatitis and HCC. Liver-specific LTalphabeta expression in mice induces liver inflammation and HCC, causally linking hepatic LT overexpression to hepatitis and HCC.

View Article and Find Full Text PDF