Publications by authors named "Monika Jaggi"

Background: Mitogen activated protein kinase (MAPK) cascade is an important signaling cascade that operates in stress signal transduction in plants. The biologically active monoterpenoid indole alkaloids (MIA) produced in Catharanthus roseus are known to be induced under several abiotic stress conditions such as wounding, UV-B etc. However involvement of any signaling component in the accumulation of MIAs remains poorly investigated so far.

View Article and Find Full Text PDF

CrPrx and CrPrx1 are class III peroxidases previously cloned and characterized from Catharanthus roseus. CrPrx is known to be apoplastic in nature, while CrPrx1 is targeted to vacuoles. In order to study their role in planta, these two peroxidases were expressed in Nicotiana tabacum.

View Article and Find Full Text PDF

Mitogen-activated protein kinase cascade is evolutionarily conserved signal transduction module involved in transducing extracellular signals to the nucleus for appropriate cellular adjustment. This cascade consists essentially of three components, a MAPK kinase kinase (MAPKKK), a MAPK kinase (MAPKK) and a MAPK connected to each other by the event of phosphorylation. These kinases play various roles in intra- and extra-cellular signaling in plants by transferring the information from sensors to responses.

View Article and Find Full Text PDF

We report here the cloning and characterization of two new class III peroxidase genes, CrPrx3 and CrPrx4 from Catharanthus roseus. The full length cDNA of CrPrx3 is 1233 bp long encoding 330 amino acid residues. The CrPrx4 cDNA contains an ORF of 1055 bp, and encodes for 318 amino acids.

View Article and Find Full Text PDF

Peroxidases are a family of isoenzymes found in all higher plants and are known to be involved in a broad range of physiological processes. However, very little information is available concerning their role in Catharanthus roseus. The present study describes the impact of both overexpression and suppression of a peroxidase gene, CrPrx in C.

View Article and Find Full Text PDF

Hairy roots are generated by integration of T-DNA in host plant genome from root inducing (Ri) plasmid of Agrobacterium rhizogenes and have been utilized for production of secondary metabolites in different plant systems. In Catharanthus roseus, hairy roots are known to show different morphologies, growth patterns, and alkaloid contents. It is also known that during transformation, there is a differential loss of a few T-DNA genes.

View Article and Find Full Text PDF