The exosome is a conserved multi-subunit ribonuclease complex that functions in 3' end processing, turnover and surveillance of nuclear and cytoplasmic RNAs. In the yeast nucleus, the 10-subunit core complex of the exosome (Exo-10) physically and functionally interacts with the Rrp6 exoribonuclease and its associated cofactor Rrp47, the helicase Mtr4 and Mpp6. Here, we show that binding of Mtr4 to Exo-10 in vitro is dependent upon both Rrp6 and Rrp47, whereas Mpp6 binds directly and independently of other cofactors.
View Article and Find Full Text PDFRrp6 is a conserved catalytic subunit of the eukaryotic nuclear exosome ribonuclease complex that functions in the productive 3' end maturation of stable RNAs, the degradation of transiently expressed noncoding transcripts and in discard pathways that eradicate the cell of incorrectly processed or assembled RNAs. The function of Rrp6 in these pathways is at least partially dependent upon its interaction with a small nuclear protein called Rrp47/Lrp1, but the underlying mechanism(s) by which Rrp47 functions in concert with Rrp6 are not established. Previous work on yeast grown in rich medium has suggested that Rrp6 expression is not markedly reduced in strains lacking Rrp47.
View Article and Find Full Text PDFThe eukaryotic exosome exoribonuclease Rrp6 forms a complex with Rrp47 that functions in nuclear RNA quality control mechanisms, the degradation of cryptic unstable transcripts (CUTs), and in the 3' end maturation of stable RNAs. Stable expression of Rrp47 is dependent upon its interaction with the N-terminal domain of Rrp6 (Rrp6NT). To address the function of Rrp47 independently of Rrp6, we developed a DECOID (decreased expression of complexes by overexpression of interacting domains) strategy to resolve the Rrp6/Rrp47 complex in vivo and employed mpp6Δ and rex1Δ mutants that are synthetic lethal with loss-of-function rrp47 mutants.
View Article and Find Full Text PDFRrp6 is a key catalytic subunit of the nuclear RNA exosome that plays a pivotal role in the processing, degradation, and quality control of a wide range of cellular RNAs. Here we report our findings on the assembly of the complex involving Rrp6 and its associated protein Rrp47, which is required for many Rrp6-mediated RNA processes. Recombinant Rrp47 is expressed as a non-globular homodimer.
View Article and Find Full Text PDFCells lacking the exosome-associated protein Rrp47 show similar defects in stable RNA processing to those observed in the absence of the catalytic subunit Rrp6, but the precise mechanism(s) by which Rrp47 functions together with Rrp6 remains unclear. Deletion complementation analyses defined an N-terminal region of Rrp47, largely coincident with the bioinformatically defined Sas10/C1D domain, which was sufficient for protein function in vivo. In vitro protein interaction studies demonstrated that this domain of Rrp47 binds the PMC2NT domain of Rrp6.
View Article and Find Full Text PDF