Publications by authors named "Monika Emmerling"

With a seminal work of Raghu and Haldane in 2008, concepts of topology have been introduced into optical systems, where some of the most promising routes to an application are efficient and highly coherent topological lasers. While some attempts have been made to excite such structures electrically, the majority of published experiments use a form of laser excitation. In this paper, we use a lattice of vertical resonator polariton micropillars to form an exponentially localized topological Su-Schrieffer-Heeger defect.

View Article and Find Full Text PDF

Artificial 1D and 2D lattices have emerged as a powerful platform for the emulation of lattice Hamiltonians, the fundamental study of collective many-body effects, and phenomena arising from non-trivial topology. Exciton-polaritons, bosonic part-light and part-matter quasiparticles, combine pronounced nonlinearities with the possibility of on-chip implementation. In this context, organic semiconductors embedded in microcavities have proven to be versatile candidates to study nonlinear many-body physics and bosonic condensation, and in contrast to most inorganic systems, they allow the use at ambient conditions since they host ultra-stable Frenkel excitons.

View Article and Find Full Text PDF

We present an optical spectroscopic study of InGaAs/AlInAs active region of quantum cascade lasers grown by low pressure metal organic vapor phase epitaxy combined with subwavelength gratings fabricated by reactive ion etching. Fourier-transformed photoluminescence measurements were used to compare the emission properties of structures before and after processing the gratings. Our results demonstrate a significant increase of the photoluminescence intensity related to intersubband transitions in the mid-infrared, which is attributed to coupling with the grating modes via so called photonic Fano resonances.

View Article and Find Full Text PDF

Stacked organic optoelectronic devices make use of electrode materials with different work functions, leading to efficient large area light emission. In contrast, lateral electrode arrangements offer the possibility to be shaped as resonant optical antennas, radiating light from subwavelength volumes. However, tailoring electronic interface properties of laterally arranged electrodes with nanoscale gaps - to optimize charge-carrier injection - is rather challenging, yet crucial for further development of highly efficient nanolight sources.

View Article and Find Full Text PDF

The introduction of topological physics into the field of photonics has led to the development of photonic devices endowed with robustness against structural disorder. While a range of platforms have been successfully implemented demonstrating topological protection of light in the classical domain, the implementation of quantum light sources in photonic devices harnessing topologically nontrivial resonances is largely unexplored. Here, we demonstrate a single photon source based on a single semiconductor quantum dot coupled to a topologically nontrivial Su-Schrieffer-Heeger (SSH) cavity mode.

View Article and Find Full Text PDF

Visible and infrared photons can be detected with a broadband response via the internal photoeffect. By use of plasmonic nanostructures, i.e.

View Article and Find Full Text PDF

Future photonic devices require efficient, multifunctional, electrically driven light sources with directional emission properties and subwavelength dimensions. Electrically driven plasmonic nanoantennas have been demonstrated as enabling technology. Here, we present the concept of a nanoscale organic light-emitting antenna (OLEA) as a color- and directionality-switchable point source.

View Article and Find Full Text PDF

Topological insulator lasers are arrays of semiconductor lasers that exploit fundamental features of topology to force all emitters to act as a single coherent laser. In this study, we demonstrate a topological insulator vertical-cavity surface-emitting laser (VCSEL) array. Each VCSEL emits vertically, but the in-plane coupling between emitters in the topological-crystalline platform facilitates coherent emission of the whole array.

View Article and Find Full Text PDF

Interacting bosonic particles in artificial lattices have proven to be a powerful tool for the investigation of exotic phases of matter as well as phenomena resulting from nontrivial topology. Exciton-polaritons, bosonic quasi-particles of light and matter, have been shown to combine the on-chip benefits of optical systems with strong interactions, inherited from their matter character. Technologically significant semiconductor platforms strictly require cryogenic temperatures.

View Article and Find Full Text PDF

The electrical excitation of guided plasmonic modes at the nanoscale enables integration of optical nanocircuitry into nanoelectronics. In this context, exciting plasmons with a distinct modal field profile constitutes a key advantage over conventional single-mode integrated photonics. Here, we demonstrate the selective electrical excitation of the lowest-order symmetric and antisymmetric plasmonic modes in a two-wire transmission line.

View Article and Find Full Text PDF

Circular Bragg gratings compose a very appealing photonic platform and nanophotonic interface for the controlled light-matter coupling of emitters in nanomaterials. Here, we discuss the integration of exfoliated monolayers of WSe with GaInP Bragg gratings. We apply hyperspectral imaging to our coupled system, and explore the spatio-spectral characteristics of our coupled monolayer-cavity system.

View Article and Find Full Text PDF

Yagi-Uda antennas are a key technology for efficiently transmitting information from point to point using radio waves. Since higher frequencies allow higher bandwidths and smaller footprints, a strong incentive exists to shrink Yagi-Uda antennas down to the optical regime. Here we demonstrate electrically-driven Yagi-Uda antennas for light with wavelength-scale footprints that exhibit large directionalities with forward-to-backward ratios of up to 9.

View Article and Find Full Text PDF

Gold nanostructures have important applications in nanoelectronics, nano-optics, and in precision metrology due to their intriguing optoelectronic properties. These properties are governed by the bulk band structure but to some extent are tunable via geometrical resonances. Here we show that the band structure of gold itself exhibits significant size-dependent changes already for mesoscopic critical dimensions below 30 nm.

View Article and Find Full Text PDF

Two-level emitters are the main building blocks of photonic quantum technologies and are model systems for the exploration of quantum optics in the solid state. Most interesting is the strict resonant excitation of such emitters to control their occupation coherently and to generate close to ideal quantum light, which is of utmost importance for applications in photonic quantum technology. To date, the approaches and experiments in this field have been performed exclusively using bulky lasers, which hinders the application of resonantly driven two-level emitters in compact photonic quantum systems.

View Article and Find Full Text PDF
Article Synopsis
  • Two-dimensional materials like graphene and transition metal dichalcogenides have special electrical and optical traits due to their unique structure and symmetry.
  • Synthetic matter, created through arrangements of atoms and other components, is providing new ways to explore these unique properties.
  • This work presents a new type of exciton polariton lattice, which could lead to developments in on-chip devices and potentially enable electrically driven lasers with interesting new characteristics.
View Article and Find Full Text PDF

Single-molecule localization microscopy (SMLM) aims for maximized precision and a high signal-to-noise ratio. Both features can be provided by placing the emitter in front of a metal-dielectric nanocoating that acts as a tuned mirror Here, we demonstrate that a higher photon yield at a lower background on biocompatible metal-dielectric nanocoatings substantially improves SMLM performance and increases the localization precision by up to a factor of two. The resolution improvement relies solely on easy-to-fabricate nanocoatings on standard glass coverslips and is spectrally and spatially tunable by the layer design and wavelength, as experimentally demonstrated for dual-color SMLM in cells.

View Article and Find Full Text PDF

We discuss coupling of site-selectively induced quantum emitters in exfoliated monolayers of WSe to plasmonic nanostructures. Gold nanorods of 20 nm-240 nm size, which are arranged in pitches of a few micrometers on a dielectric surface, act as seeds for the formation of quantum emitters in the atomically thin materials. We observe characteristic narrow-band emission signals from the monolayers, which correspond well with the positions of the metallic nanopillars with and without thin dielectric coating.

View Article and Find Full Text PDF

Deterministic techniques enabling the implementation and engineering of bright and coherent solid-state quantum light sources are key for the reliable realization of a next generation of quantum devices. Such a technology, at best, should allow one to significantly scale up the number of implemented devices within a given processing time. In this work, we discuss a possible technology platform for such a scaling procedure, relying on the application of nanoscale quantum dot imaging to the pillar microcavity architecture, which promises to combine very high photon extraction efficiency and indistinguishability.

View Article and Find Full Text PDF
Article Synopsis
  • Light can be confined at atomic scales when matter is present, allowing for significant intensity enhancements.
  • Researchers created gold nanorod dimers with incredibly small gaps (less than 0.5 nm) through self-assembly.
  • This confinement of light leads to new possibilities in various fields like spectroscopy, nonlinear optics, and the development of innovative quantum-optical devices.
View Article and Find Full Text PDF

Electrically connected resonant optical antennas hold promise for the realization of highly efficient nanoscale electro-plasmonic devices that rely on a combination of electric fields and local near-field intensity enhancement. Here we demonstrate the feasibility of such a concept by attaching leads to the arms of a two-wire antenna at positions of minimal near-field intensity with negligible influence on the antenna resonance. White-light scattering experiments in accordance with simulations show that the optical tunability of connected antennas is fully retained.

View Article and Find Full Text PDF