Publications by authors named "Monika Doblin"

Adhesion and consequent adoption of a sessile habit is a common feature of many green algae and was likely a key mechanism in terrestrialization by an ancient zygnematophyte (i.e., the Zygnematophyceae, the group of algae ancestral to land plants).

View Article and Find Full Text PDF
Article Synopsis
  • Plant adaptations for moving from water to land led to changes in cell wall structure, providing resilience against various stresses.
  • The study focuses on red auronidin pigment in liverwort Marchantia polymorpha, exploring its role and characteristics in the cell wall.
  • Auronidin appears to enhance cell wall strength, protect against excess light, and boost resistance to pathogens, showcasing an evolutionary adaptation in liverworts to handle terrestrial challenges.
View Article and Find Full Text PDF

Cannabis sativa L. is one of the oldest domesticated crops. Hemp-type cultivars, which predominantly produce non-intoxicating cannabidiol (CBD), have been selected for their fast growth, seed, and fibre production, while drug-type chemovars were bred for high accumulation of tetrahydrocannabinol (THC).

View Article and Find Full Text PDF

Linear, unbranched (1,3;1,4)-β-glucans (mixed-linkage glucans or MLGs) are commonly found in the cell walls of grasses, but have also been detected in basal land plants, algae, fungi and bacteria. Here we show that two family GT2 glycosyltransferases from the Gram-positive bacterium Sarcina ventriculi are capable of synthesizing MLGs. Immunotransmission electron microscopy demonstrates that MLG is secreted as an exopolysaccharide, where it may play a role in organizing individual cells into packets that are characteristic of Sarcina species.

View Article and Find Full Text PDF

Medicinal plants are integral to traditional medicine systems worldwide, being pivotal for human health. Harvesting plant material from natural environments, however, has led to species scarcity, prompting action to develop cultivation solutions that also aid conservation efforts. Biotechnological tools, specifically plant tissue culture and genetic transformation, offer solutions for sustainable, large-scale production and enhanced yield of valuable biomolecules.

View Article and Find Full Text PDF

Oat (Avena sativa) is a cereal crop whose grains are rich in (1,3;1,4)-β-D-glucan (mixed-linkage glucan or MLG), a soluble dietary fiber. In our study, we analyzed oat endosperm development in 2 Canadian varieties with differing MLG content and nutritional value. We confirmed that oat undergoes a nuclear type of endosperm development but with a shorter cellularization phase than barley (Hordeum vulgare).

View Article and Find Full Text PDF

Plant proteins that are secreted without a classical signal peptide leader sequence are termed leaderless secretory proteins (LSPs) and are implicated in both plant development and (a)biotic stress responses. In plant proteomics experimental workflows, identification of LSPs is hindered by the possibility of contamination from other subcellar compartments upon purification of the secretome. Applying machine learning algorithms to predict LSPs in plants is also challenging due to the rarity of experimentally validated examples for training purposes.

View Article and Find Full Text PDF

is a multi-use and chemically complex plant which is utilized for food, fiber, and medicine. Plants produce a class of psychoactive and medicinally important specialized metabolites referred to as phytocannabinoids (PCs). The phytohormone methyl jasmonate (MeJA) is a naturally occurring methyl ester of jasmonic acid and a product of oxylipin biosynthesis which initiates and regulates the biosynthesis of a broad range of specialized metabolites across a number of diverse plant lineages.

View Article and Find Full Text PDF

Cannabis sativa L. has been known for at least 2000 years as a source of important, medically significant specialised metabolites and several bio-active molecules have been enriched from multiple chemotypes. However, due to the many levels of complexity in both the commercial cultivation of cannabis and extraction of its specialised metabolites, several heterologous production approaches are being pursued in parallel.

View Article and Find Full Text PDF

Secondary cell walls (SCWs) in stem cells provide mechanical strength and structural support for growth. SCW thickening varies under different light conditions. Our previous study revealed that blue light enhances SCW thickening through the redundant function of MYC2 and MYC4 directed by CRYPTOCHROME1 (CRY1) signaling in fiber cells of the Arabidopsis inflorescence stem.

View Article and Find Full Text PDF

Plants of Cannabis sativa L. (Cannabaceae) produce an array of more than 160 isoprenylated resorcinyl polyketides, commonly referred to as phytocannabinoids. These compounds represent molecules of therapeutic importance due to their modulation of the human endocannabinoid system (ECS).

View Article and Find Full Text PDF

Arabinogalactan-proteins (AGPs) are members of the hydroxyproline-rich glycoprotein (HRGP) superfamily, a group of highly diverse proteoglycans that are present in the cell wall, plasma membrane as well as secretions of almost all plants, with important roles in many developmental processes. The role of GALT8 (At1g22015), a Glycosyltransferase-31 (GT31) family member of the Carbohydrate-Active Enzyme database (CAZy), was examined by biochemical characterization and phenotypic analysis of a mutant line. To characterize its catalytic function, GALT8 was heterologously expressed in tobacco leaves and its enzymatic activity tested.

View Article and Find Full Text PDF

Glycosylation is a fundamental co-translational and/or post-translational modification process where an attachment of sugars onto either proteins or lipids can alter their biological function, subcellular location and modulate the development and physiology of an organism. Glycosylation is not a template driven process and as such produces a vastly larger array of glycan structures through combinatorial use of enzymes and of repeated common scaffolds and as a consequence it provides a huge expansion of both the proteome and lipidome. While the essential role of - and -glycan modifications on mammalian glycoproteins is already well documented, we are just starting to decode their biological functions in plants.

View Article and Find Full Text PDF
Article Synopsis
  • Glycosyltransferases (GTs) are crucial enzymes for forming glycosidic linkages, involved in producing various important biological products like glycans and glycoproteins, and plants have a significantly larger variety of these enzymes compared to animals.
  • This study enhances the existing GT clone collection by adding 105 new GT cDNAs, resulting in a total of 508 clones, and establishes a comprehensive pipeline for analyzing these enzymes' functions using techniques like mass spectrometry and enzymatic assays.
  • Focusing on the GT14 family, the research successfully demonstrated the activity of specific GT enzymes in synthesizing β-glucuronosyltransferase and identified a new member with greater activity, suggesting
View Article and Find Full Text PDF

is a small, fast growing grass species in the subfamily that has become established as a model for other temperate cereals of agricultural significance, such as barley () and wheat (). The unusually high content in whole grains of β-D-(1,3;1,4)-glucan or mixed linkage glucan (MLG), considered a valuable dietary fibre due to its increased solubility in water compared with cellulose, makes an attractive model for these polysaccharides. The carbohydrate composition of grain in is interesting not only in understanding the synthesis of MLG, but more broadly in the mechanism(s) of carbon partitioning in cereal grains.

View Article and Find Full Text PDF

Plant cell walls (PCWs) form the outer barrier of cells that give the plant strength and directly interact with the environment and other cells in the plant. PCWs are composed of several polysaccharides, of which cellulose forms the main fibrillar network. Enmeshed between these fibrils of cellulose are non-cellulosic polysaccharides (NCPs), pectins, and proteins.

View Article and Find Full Text PDF

The mechanisms underlying rootzone-localized responses to salinity during early stages of barley development remain elusive. In this study, we performed the analyses of multi-root-omes (transcriptomes, metabolomes, and lipidomes) of a domesticated barley cultivar (Clipper) and a landrace (Sahara) that maintain and restrict seedling root growth under salt stress, respectively. Novel generalized linear models were designed to determine differentially expressed genes (DEGs) and abundant metabolites (DAMs) specific to salt treatments, genotypes, or rootzones (meristematic Z1, elongation Z2, and maturation Z3).

View Article and Find Full Text PDF

Cannabis (Cannabis sativa L.) is one of the oldest cultivated plants purported to have unique medicinal properties. However, scientific research of cannabis has been restricted by the Single Convention on Narcotic Drugs of 1961, an international treaty that prohibits the production and supply of narcotic drugs except under license.

View Article and Find Full Text PDF

Metal toxicity is a common problem in crop species worldwide. Some metals are naturally toxic, whereas others such as manganese (Mn) are essential micro-nutrients for plant growth but can become toxic when in excess. Changes in the composition of the xylem sap, which is the main pathway for ion transport within the plant, is therefore vital to understanding the plant's response(s) to metal toxicity.

View Article and Find Full Text PDF

Barley (Hordeum vulgare L) grain is comparatively rich in (1,3;1,4)-β-glucan, a source of fermentable dietary fibre that protects against various human health conditions. However, low grain (1,3;1,4)-β-glucan content is preferred for brewing and distilling. We took a reverse genetics approach, using CRISPR/Cas9 to generate mutations in members of the Cellulose synthase-like (Csl) gene superfamily that encode known (HvCslF6 and HvCslH1) and putative (HvCslF3 and HvCslF9) (1,3;1,4)-β-glucan synthases.

View Article and Find Full Text PDF

Most cell wall and secreted β-glucans are synthesised by the CAZy Glycosyltransferase 2 family (www.cazy.org), with different members catalysing the formation of (1,4)-β-, (1,3)-β-, or both (1,4)- and (1,3)-β-glucosidic linkages.

View Article and Find Full Text PDF

Secondary cell walls (SCWs) are formed in some specific types of plant cells, providing plants with mechanical strength. During plant growth and development, formation of secondary cell walls is regulated by various developmental and environmental signals. The underlying molecular mechanisms are poorly understood.

View Article and Find Full Text PDF

A polysaccharide-rich mucilage is released from the seed coat epidermis of numerous plant species and has been intensively studied in the model plant Arabidopsis. This has led to the identification of a large number of genes involved in the synthesis, secretion and modification of cell wall polysaccharides such as pectin, hemicellulose and cellulose being identified. These genes include a small network of transcription factors (TFs) and transcriptional co-regulators, that not only regulate mucilage production, but epidermal cell differentiation and in some cases flavonoid biosynthesis in the internal endothelial layer of the seed coat.

View Article and Find Full Text PDF

Mixed-linkage (1,3;1,4)-β-glucan (MLG), an abundant cell wall polysaccharide in the Poaceae, has been detected in ascomycetes, algae, and seedless vascular plants, but not in eudicots. Although MLG has not been reported in bryophytes, a predicted glycosyltransferase from the moss (Pp3c12_24670) is similar to a bona fide ascomycete MLG synthase. We tested whether encodes an MLG synthase by expressing it in wild tobacco () and testing for release of diagnostic oligosaccharides from the cell walls by either lichenase or (1,4)-β-glucan endohydrolase.

View Article and Find Full Text PDF

Sucrose non-fermenting 1-related protein kinase 1 (SnRK1) is a central metabolic regulator and the plant orthologue of the mammalian AMP-activated protein kinase (AMPK); both are energy-sensing heterotrimeric enzymes comprising a catalytic α- and regulatory β- and γ-subunits. α-Subunits contain a serine/threonine kinase domain (KD) at their N-terminus that is immediately followed by a small regulatory domain termed the auto-inhibitory domain (AID) in AMPK and the ubiquitin-associated domain (UBA) in SnRK1. Association of the AID with the AMPK KD inhibits activating phosphorylation of the KD by upstream kinases and promotes dephosphorylation, as well as inhibiting AMPK catalytic activity.

View Article and Find Full Text PDF