Short half-life and low bioavailability of Venlafaxine hydrochloride (VF), an antidepressant drug, necessitates the frequent administration of VF tablets in a day in order to maintain adequate drug concentration in blood plasma. This generates the need for the development of formulations which could prolong the release of VF and reduce the multiple dosages. The present work explores the combination of Montmorillonite (Mt) with Pluronic F-68 (PF-68) (OrganoMT) for oral delivery of VF.
View Article and Find Full Text PDFWater Sci Technol
February 2017
Silica nanoparticles with a surface area of 673.60 m/g and particle size of 8-12 nm were prepared using aerogel process (AP) followed by super critical drying. Zero valent Fe, Co, Pt, and bimetallic Fe/Pt and Fe/Co were loaded using an incipient wetness impregnation technique and subsequent reduction.
View Article and Find Full Text PDFThe present paper contains a detailed overview of recent advances relating to polyaniline (PANI) as a transducer material for biosensor applications. This conducting polymer provides enormous opportunities for binding biomolecules, tuning their bio-catalytic properties, rapid electron transfer and direct communication to produce a range of analytical signals and new analytical applications. Merging the specific nature of different biomolecules (enzymes, nucleic acids, antibodies, etc.
View Article and Find Full Text PDFPolyaniline nanotube (PANI-NT) based films have been fabricated onto indium-tin-oxide (ITO) coated glass plates via electrophoretic technique. These PANI-NT/ITO electrodes have been utilized for covalent immobilization of cholesterol oxidase (ChOx) using glutaraldehyde (Glu) as cross-linker. Structural, morphological and electrochemical characterization of PANI-NT/ITO electrode and ChOx/Glu/PANI-NT/ITO bioelectrode have been done using FT-IR spectroscopy, SEM, electrochemical impedance spectroscopy and cyclic voltammetry techniques.
View Article and Find Full Text PDFPolyaniline nanospheres (PANI-NS) prepared by morphological transformation of micelle polymerized camphorsulfonic acid (CSA) doped polyaniline nanotubes (PANI-NT) in the presence of ethylene glycol (EG) have been characterized by X-ray diffraction, atomic force microscopy, transmission electron microscopy, scanning electron microscopy, Fourier transform infra-red and UV-Visible spectroscopy. A PANI-NS (60-80 nm) film deposited onto an indium-tin-oxide (ITO) coated glass plate by the solution casting method has been utilized for covalent immobilization of biomolecules (cholesterol oxidase (ChOx)) viaN-ethyl-N'-(3-dimethylaminopropyl) carbodiimide (EDC) and N-hydroxysuccinimide (NHS) chemistry for fabrication of a cholesterol biosensor. The ChOx/PANI-NS/ITO bioelectrode detects cholesterol in the concentration range of 25 to 500 mg dL(-1) with sensitivity of 1.
View Article and Find Full Text PDFNanoparticles of MgO, Al(2)O(3), CaO and SiO(2) were synthesized using aerogel route, and characterized by N(2)-BET, SEM, TEM, XRD, TGA and FT-IR techniques. Characterization indicated 2-75 nm diameter nanoparticles with 135-887 m(2)/g surface area and microporous-mesoporous characteristics. Prepared nanoparticles were tested for their adsorptive potential by conducting studies on kinetics of adsorption of diethylchlorophosphate under static conditions.
View Article and Find Full Text PDFSelf-assembled monolayers (SAMs) have aroused much interest due to their potential applications in biosensors, biomolecular electronics and nanotechnology. This has been largely attributed to their inherent ordered arrangement and controllable properties. SAMs can be formed by chemisorption of organic molecules containing groups like thiols, disulphides, amines, acids or silanes, on desired surfaces and can be used to fabricate biomolecular electronic devices.
View Article and Find Full Text PDFOctadecanethiol (ODT) self-assembled monolayer (SAM) prepared onto gold-coated glass plate has been modified by using nitrene reaction of 1-fluoro-2-nitro-4-azidobenzene (FNAB) that further covalently binds to cholesterol oxidase (ChOx) via thermal reaction. FNAB acts as a bridge (cross-linker) between SAM and ChOx. The ChOx/FNAB/ODT/Au electrode thus fabricated has been characterized using contact angle (CA) measurements, UV-vis spectroscopy, electrochemical techniques and X-ray photoelectron spectroscopy (XPS) technique, respectively.
View Article and Find Full Text PDFNanocomposite film composed of polyaniline (PANI) and multiwalled carbon nanotubes (MWCNT), prepared electrophoretically onto indium tin oxide (ITO)-coated glass plate, was used for covalent immobilization of cholesterol oxidase (ChOx) via N-ethyl-N'-(3-dimethylaminopropyl) carbodiimide (EDC) and N-hydroxysuccinimide (NHS) chemistry. Results of linear sweep voltammetric measurements reveal that ChOx/PANI-MWCNT/ITO bioelectrode can detect cholesterol in the range of 1.29 to 12.
View Article and Find Full Text PDFGold nanoparticles (AuNPs) have been self-assembled onto electrochemically deposited polyaniline (PANI) films on indium-tin-oxide (ITO) coated glass plates to fabricate glucose biosensor. The covalent immobilization of glucose oxidase (GOx) in the near vicinity of gold nanoparticles has been obtained using N-ethyl-N'-(3-dimethylaminopropyl) carbodiimide (EDC)/N-hydroxysuccinimide (NHS), chemistry between amino groups of PANI and COOH groups of GOx. These AuNPs-PANI/ ITO and GOx/AuNPs-PANI/ITO composite films have been characterized using Fourier transform infra red (FTIR) and cyclic voltammetry (CV) techniques, respectively.
View Article and Find Full Text PDFBiosensors have recently gained much attention in the field of health care for the management of various important analytes in a biological system. The area achieved tremendous progress from the time when the first Clark electrode for measurement of glucose was realized. Advances in the biosensor design are appearing at a high rate as these devices play increasingly important roles in our daily lives.
View Article and Find Full Text PDFCholesterol oxidase (ChOx), cholesterol esterase (ChEt), and horseradish peroxidase (HRP) have been co-immobilized covalently on a self-assembled monolayer (SAM) of N-(2-aminoethyl)-3-aminopropyltrimethoxysilane (AEAPTS) deposited on an indium-tin-oxide (ITO) glass surface. These enzyme-modified (ChOx-ChEt-HRP/AEAPTS/ITO) biosensing electrodes have been used to estimate cholesteryl oleate from 10 to 500 mg dL(-1). The sensitivity, Km value, and shelf-life of these ChEt-ChOx-HRP/AEAPTS/ITO biosensing electrodes have been found to be 124 nA mg(-1) dL, 95.
View Article and Find Full Text PDFCholesterol oxidase (ChOx) has been covalently immobilized onto electrophoretically deposited conducting polymer film (on indium-tin-oxide (ITO) glass plate) derived from nano-structured polyaniline (PANI) colloidal suspension using N-ethyl-N'-(3-dimethylaminopropyl) corbodiimide (EDC) and N-hydroxysuccinimide (NHS) chemistry. These PANI/ITO and ChOx/PANI/ITO electrodes have been characterized using ultraviolet-visible (UV-vis), Fourier transform-infrared (FT-IR), scanning electron microscopy (SEM), and impedance spectroscopy techniques, respectively. These ChOx/PANI/ITO bio-electrodes exhibit linearity from 25 to 400 mg dL(-1) of cholesterol, detection limit as 25 mg dL(-1) and sensitivity as 7.
View Article and Find Full Text PDFA dithiobissuccinimidyl propionate (DTSP) self-assembled monolayer (SAM) prepared onto a gold (Au) surface has been utilized for covalent immobilization of cholesterol oxidase (ChOx) and cholesterol esterase (ChEt). These ChOx-ChEt/DTSP/Au bio-electrodes have been characterized using electrochemical impedance and cyclic voltammetric (CV) techniques, respectively. Differential pulse voltammetry (DPV) has been used for enzymatic assay of immobilized ChOx and ChEt onto the DTSP modified gold surface as a function of cholesterol oleate concentration.
View Article and Find Full Text PDFCholesterol oxidase (ChOx) has been covalently immobilized onto two-dimensional self-assembled monolayer (SAM) of N-(2-aminoethyl)-3-aminopropyl-trimethoxysilane (AEAPTS) deposited on the indium-tin oxide (ITO) coated glass plates using N-ethyl-N'-(3-dimethylaminopropyl) carbodiimide and N-hydroxysuccinimide (EDC/NHS) chemistry. These ChO x/AEAPTS/ITO bioelectrodes are characterized using contact angle (CA) measurements, UV-visible spectroscopy, atomic force microscopy (AFM), electrochemical impedance technique, and Fourier transform infrared (FT-IR) technique. The covalently immobilized ChOx-modified AEAPTS bioelectrodes are used for the estimation of cholesterol in solution using UV-visible technique.
View Article and Find Full Text PDFGlucose oxidase (GOx) has been covalently immobilized onto chemically synthesized thiolated gold nanoparticles (5-8 nm) via N-ethyl-N'-(3-dimethylaminopropyl) carbodiimide (EDC) and N-hydroxysuccinimide (NHS). The lower value of the Michaelis-Menton constant obtained for the immobilized (3.74 mM) GOx compared with that for the free (5.
View Article and Find Full Text PDFCholesterol oxidase (ChOx) has been covalently immobilized onto 1-fluoro-2-nitro-4-azidobenzene (FNAB) modified poly-(3-hexylthiophene) (P3HT) self-assembled monolayer (SAM) onto gold coated glass plates. These ChOx/FNAB/P3HT/Au bio-electrodes have been characterized using contact angle (CA) measurements, UV-vis spectroscopy, electrochemical impedance technique, cyclic voltammetric technique and atomic force microscopic (AFM) technique, respectively. The ChOx/FNAB/P3HT/Au bio-electrodes were utilized for the estimation of cholesterol concentration in standard solutions using surface plasmon resonance (SPR) technique.
View Article and Find Full Text PDF