Publications by authors named "Monika Brzychczy-Wloch"

Solid lipid nanoparticles are currently one of the most widely investigated types of drug delivery carriers. Considering the fact that their clinical translation boosted after the approval of two COVID-19 mRNA vaccines, it is crucial to fully explain how the processing parameters affect the properties of the obtained nanoparticles and the drug loading efficiency. This study aimed to evaluate the influence of different manufacturing parameters on the properties of stearic acid-based nanoparticles fabricated using the emulsification/solvent diffusion method.

View Article and Find Full Text PDF

Background: A promising approach to the treatment of bacterial infections involves inhibiting the quorum sensing (QS) mechanism to prevent the formation and growth of bacterial biofilm. While antibiotics are used to kill remaining bacteria, QS inhibitors (QSIs) allow for antibiotic doses to be reduced. This study focuses on evaluating the synergy between gentamicin sulphate (GEN), tobramycin (TOB), or azithromycin (AZM) with linolenic acid (LNA) against the formation of an early Staphylococcus aureus biofilm.

View Article and Find Full Text PDF

The real-time reverse-transcriptase polymerase-chain-reaction (rRT-PCR) tests are the gold standard in detecting SARS-CoV-2 virus infection. However, despite high sensitivity and specificity, they have limitations that in some cases may result in false negative results. Therefore, it is reasonable to search for additional tools that could support microbiological diagnosis of SARS-CoV-2.

View Article and Find Full Text PDF

Objective: Voluntary counselling and testing points (VCTs) offer anonymous and free HIV tests in Poland. They also play an essential role in educational initiatives focused on the prevention and diagnosis of HIV and other sexually transmitted infections. However, no comprehensive data is available that summarizes the results of the work carried out by these VCTs.

View Article and Find Full Text PDF

Background: Bovine mastitis is a widespread disease affecting dairy cattle worldwide and it generates substantial losses for dairy farmers. Mastitis may be caused by bacteria, fungi or algae. The most common species isolated from infected milk are, among others, Streptococcus spp.

View Article and Find Full Text PDF

Background: Bovine mastitis is one of the most widespread diseases affecting cattle, leading to significant losses for the dairy industry. Currently, the so-called gold standard in mastitis diagnosis involves determining the somatic cell count (SCC). Apart from a number of advantages, this method has one serious flaw: It does not identify the etiological factor causing a particular infection, making it impossible to introduce targeted antimicrobial therapy.

View Article and Find Full Text PDF

Polyurethanes (PUs) are versatile polymers used in medical applications due to their high flexibility and fatigue resistance. PUs are widely used for synthetic blood vessels, wound dressings, cannulas, and urinary and cardiovascular catheters. Many scientific reports indicate that surface wettability is crucial for biocompatibility and bacterial adhesion.

View Article and Find Full Text PDF

At the time when pathogens are developing robust resistance to antibiotics, the demand for implant surfaces with microbe-killing capabilities has significantly risen. To achieve this goal, profound understanding of the underlying mechanisms is crucial. Our study demonstrates that graphene oxide (GO) nano films deposited on stainless steel (SS316L) exhibit superior antibacterial features.

View Article and Find Full Text PDF

The solid-aqueous boundary formed upon biomaterial implantation provides a playground for most biochemical reactions and physiological processes involved in implant-host interactions. Therefore, for biomaterial development, optimization, and application, it is essential to understand the biomaterial-water interface in depth. In this study, oxygen plasma-functionalized polyurethane surfaces that can be successfully utilized in contact with the tissue of the respiratory system were prepared and investigated.

View Article and Find Full Text PDF

Background: Poor oral hygiene and the increased incidence and severity of periodontitis may exacerbate SARS-CoV-2 infection. The aim was to evaluate the oral microbiota of 60 participants divided into groups: COVID-19 convalescents who received antibiotics during hospitalization (I), COVID-19 convalescents without antibiotic therapy (II) and healthy individuals (III).

Materials And Methods: Dental examination was conducted, and oral health status was evaluated using selected dental indexes.

View Article and Find Full Text PDF

Recurrent bacterial infections are a common cause of death for patients with cystic fibrosis and chronic obstructive pulmonary disease. Herein, we present the development of the degradable poly(sebacic acid) (PSA) microparticles loaded with different concentrations of azithromycin (AZ) as a potential powder formulation to deliver AZ locally to the lungs. We characterized microparticle size, morphology, zeta potential, encapsulation efficiency, interaction PSA with AZ and degradation profile in phosphate buffered saline (PBS).

View Article and Find Full Text PDF

Background: The use of nanotechnology in the production of medical equipment has opened new possibilities to fight bacterial biofilm developing on their surfaces, which can cause infectious complications. In this study, we decided to use gentamicin nanoparticles. An ultrasonic technique was used for their synthesis and immediate deposition onto the surface of tracheostomy tubes, and their effect on bacterial biofilm formation was evaluated.

View Article and Find Full Text PDF

Implant-related infections are a worldwide issue that is considered very challenging. Conventional therapies commonly end up failing; thus, new solutions are being investigated to overcome this problem. The in situ delivery of the drug at the implant site appears to be more sufficient compared to systemic antibiotic therapy.

View Article and Find Full Text PDF

Bovine mastitis is the most common disease affecting dairy cattle worldwide and it generates substantial losses for cattle breeders. One of the most common pathogens identified in infected milk samples is . Currently, there is no fast test for recognizing bacteria species on the market.

View Article and Find Full Text PDF

The stethoscope remains an indispensable diagnostic tool for medical students. Improper stethoscope hygiene may cause bacterial infections, including hospital-associated infections (HAIs), which challenge the Polish medical system. The study's main objective was to evaluate the hygiene habits declared by medical students.

View Article and Find Full Text PDF

The aim of the study was to evaluate particular polymerase chain reaction primers targeting selected representative genes and the influence of a preincubation step in a selective broth on the sensitivity of group B (GBS) detection by nucleic acid amplification techniques (NAAT). Research samples were vaginal and rectal swabs collected in duplicate from 97 pregnant women. They were used for enrichment broth culture-based diagnostics, bacterial DNA isolation, and amplification, using primers based on species-specific , and genes.

View Article and Find Full Text PDF

Introduction: Mastitis is a widespread mammary gland disease of dairy cows that causes severe economic losses to dairy farms. Mastitis can be caused by bacteria, fungi, and algae. The most common species isolated from infected milk are, among others, spp.

View Article and Find Full Text PDF

Introduction: The effects of SARS‑CoV‑2 infection on the composition of the upper respiratory tract (URT) microbiota are yet to be established, and more attention to this topic is needed.

Objectives: The study aimed to assess the bacterial profile and the possible association between the URT microbiota composition and the SARS‑CoV‑2 viral load.

Patients And Methods: Nasopharyngeal swabs were taken from 60 adult patients with SARS‑CoV‑2 infection who were divided into 3 groups based on the quantification cycle (Cq) value in the quantitative polymerase chain reaction test: group I (n = 20), Cq lower than or equal to 31 (high replication rate); group II (n = 20), Cq greater than 31 and lower than 38 (low replication rate), and group III (n = 20), Cq higher than or equal to 38 (virus eliminated from the nasopharyngeal epithelial cells).

View Article and Find Full Text PDF

<b>Introduction:</b> In hospitalized patients, tracheostomy tubes (TTs) are susceptible to colonization by biofilm- producing potentially pathogenic microorganisms (PPMs). Contact with TTs, which are situated in a critical region of the body with enormous microbial exposure, may lead to the emer-gence of resistant respiratory infections.</br></br> <b>Objective:</b> Our study aimed to isolate and identify Gram-positive and Gram-negative PPMs, mark their antibiotic resistance and determine the bacteriological pattern of the biofilm colonizing the TTs.

View Article and Find Full Text PDF

Bone infections are a serious problem to cure, as systemic administration of antibiotics is not very effective due to poor bone vascularization. Therefore, many drug delivery systems are investigated to solve this problem. One of the potential solutions is the delivery of antibiotics from poly(L-actide-co-glycolide) (PLGA) nanoparticles suspended in the gellan gum injectable hydrogel.

View Article and Find Full Text PDF

Preliminary microbiological diagnosis usually relies on microscopic examination and, due to the routine culture and bacteriological examination, lasts up to 11 days. Hence, many deep learning methods based on microscopic images were recently introduced to replace the time-consuming bacteriological examination. They shorten the diagnosis by 1-2 days but still require iterative culture to obtain monoculture samples.

View Article and Find Full Text PDF

Biofilms are complex structures formed by bacteria, fungi, or even viruses on biotic and abiotic surfaces, and they can be found in almost any part of the human body. The prevalence of biofilm-associated diseases has increased in recent years, mainly because of the frequent use of indwelling medical devices that create opportunities for clinically important bacteria and fungi to form biofilms either on the device or on the neighboring tissues. As a result of their resistance to antibiotics and host immunity factors, biofilms have been associated with the development or persistence of several clinically important diseases.

View Article and Find Full Text PDF

: Bacterial biofilm on the surface of tracheostomy tubes (TTs) is a potential reservoir of potentially pathogenic bacteria, including . For this reason, our study aimed to investigate biofilm production in vitro and the presence of AD and MSCRAMM genes in clinical strains derived from TTs, with respect to antibiotic resistance and genetic variability. The clonality of the strains was analyzed by the PFGE method.

View Article and Find Full Text PDF

Group B streptococcus (GBS) is one of the uropathogens that causes urinary tract infections (UTIs). The aims of this article were molecular characterization, an analysis of antimicrobial susceptibility profiles, adherence to bladder endothelial cells, and the detection of immunoreactive proteins of 94 clinical strains of GBS isolated from adult Polish patients with UTI. Antibiotic susceptibilities were determined by disk diffusion.

View Article and Find Full Text PDF