In this work we set up an in vitro model, based on organotypic cultures of spinal cord slices and dorsal root ganglia explants from P7 rats, embedded in a collagen matrix and cultured under the same conditions. As specific reinnervation of end-organs is still an unresolved issue in peripheral nerve research, we characterized a model that allows us to compare under the same conditions motor and sensory neuron regeneration. RT97 labeling was used to visualize the regenerating neurites that extended in the collagen gel from both motor neurons in the spinal cord slices and sensory neurons in the DRG explants after a few days in vitro.
View Article and Find Full Text PDFPurpose: Damage to segmental motoneurons and to spinal cord parenchyma cause denervation atrophy to the muscles, contributing to the chronic disability originated by spinal cord injury (SCI) and spinal motor neuron diseases. After SCI, damage is promoted by several underlying mechanisms, including release of glutamate and consequent over-activation of glutamate receptors, mainly NMDA receptors, that lead to neuronal death. Due to the lack of effective treatments for such conditions, new alternatives need to be explored.
View Article and Find Full Text PDF