Background/aims: Chronic psychological stress affects gastrointestinal physiology which may underpin alterations in the immune response and epithelial transport, both functions are partly regulated by enteric nervous system. However, its effects on enteric neuroplasticity are still unclear. This study aims to investigate the effects of chronic unpredictable psychological stress on intestinal motility and prominent markers of enteric function.
View Article and Find Full Text PDFNeuropathic pain is a prevalent and severe chronic syndrome, often refractory to treatment, whose development and maintenance may involve epigenetic mechanisms. We previously demonstrated a causal relationship between miR-30c-5p upregulation in nociception-related neural structures and neuropathic pain in rats subjected to sciatic nerve injury. Furthermore, a short course of an miR-30c-5p inhibitor administered into the cisterna magna exerts long-lasting antiallodynic effects via a TGF-β1-mediated mechanism.
View Article and Find Full Text PDFVisceral hypersensitivity (VH) is a hallmark of many functional gastrointestinal disorders including irritable bowel syndrome and is categorized by a dull, diffuse sensation of abdominal pain. Recently, the gut microbiota has been implicated in VH in male mice, but the effects in females have yet to be explored fully. To this end, we now show that somewhat surprisingly, female germ-free mice have similar visceral pain responses to colorectal distension (CRD) as their conventional controls.
View Article and Find Full Text PDFNeuropathic pain is highly prevalent in pathological conditions such as diabetes, herpes zoster, trauma, etc. The severity and refractoriness to treatments make neuropathic pain a significant health concern. The transforming growth factor (TGF-β) family of cytokines is involved in pain modulation.
View Article and Find Full Text PDFNeuropathic pain is a debilitating chronic syndrome that is often refractory to currently available analgesics. Aberrant expression of several microRNAs (miRNAs) in nociception-related neural structures is associated with neuropathic pain in rodent models. We have exploited the antiallodynic phenotype of mice lacking the bone morphogenetic protein and activin membrane-bound inhibitor (BAMBI), a transforming growth factor-β (TGF-β) pseudoreceptor.
View Article and Find Full Text PDFThe perception of visceral pain is a complex process involving the spinal cord and higher order brain structures. Increasing evidence implicates the gut microbiota as a key regulator of brain and behavior, yet it remains to be determined if gut bacteria play a role in visceral sensitivity. We used germ-free mice (GF) to assess visceral sensitivity, spinal cord gene expression and pain-related brain structures.
View Article and Find Full Text PDFExposure to high-fat diet induces both, peripheral and central alterations in TLR4 expression. Moreover, functional TLR4 is required for the development of high-fat diet-induced obesity. Recently, central alterations in TLR4 expression have been associated with the modulation of visceral pain.
View Article and Find Full Text PDFAims: TGF-β regulates tissue fibrosis: TGF-β promotes fibrosis, whereas bone morphogenetic protein (BMP)-7 is antifibrotic. To demonstrate that (i) left ventricular (LV) remodelling after pressure overload is associated with disequilibrium in the signalling mediated by these cytokines, and (ii) BMP-7 exerts beneficial effects on LV remodelling and reverse remodelling.
Methods And Results: We studied patients with aortic stenosis (AS) and mice subjected to transverse aortic constriction (TAC) and TAC release (de-TAC).
Transforming growth factor-β1 (TGF-β1) protects against neuroinflammatory events underlying neuropathic pain. TGF-β signaling enhancement is a phenotypic characteristic of mice lacking the TGF-β pseudoreceptor BAMBI (BMP and activin membrane-bound inhibitor), which leads to an increased synaptic release of opioid peptides and to a naloxone-reversible hypoalgesic/antiallodynic phenotype. Herein, we investigated the following: (1) the effects of BAMBI deficiency on opioid receptor expression, functional efficacy, and analgesic responses to endogenous and exogenous opioids; and (2) the involvement of the opioid system in the antiallodynic effect of TGF-β1.
View Article and Find Full Text PDFBackground: Functional gastrointestinal disorders, which have visceral hypersensitivity as a core symptom, are frequently comorbid with stress-related psychiatric disorders. Increasing evidence points to a key role for toll-like receptor 4 (TLR4) in chronic pain states of somatic origin. However, the central contribution of TLR4 in visceral pain sensation remains elusive.
View Article and Find Full Text PDFLeft ventricular (LV) pressure overload is a major cause of heart failure. Transforming growth factors-β (TGF-βs) promote LV remodeling under biomechanical stress. BAMBI (BMP and activin membrane-bound inhibitor) is a pseudoreceptor that negatively modulates TGF-β signaling.
View Article and Find Full Text PDFColorectal distension (CRD) is a widely accepted, reproducible method for assessing visceral sensitivity in both clinical and pre-clinical studies. Distension of the colon mirrors the human scenario of visceral pain with regard to intensity and referral of pain in patients. There are several readouts that can be applied to the CRD protocol depending on the species being evaluated, two of which are described in this unit.
View Article and Find Full Text PDFThe transforming growth factor-β (TGF-β) superfamily is a multifunctional, contextually acting family of cytokines that participate in the regulation of development, disease and tissue repair in the nervous system. The TGF-β family is composed of several members, including TGF-βs, bone morphogenetic proteins (BMPs) and activins. In this review, we discuss recent findings that suggest TGF-β function as important pleiotropic modulators of nociceptive processing both physiologically and under pathological painful conditions.
View Article and Find Full Text PDFExperimental and clinical evidence has shown that chronic stress plays an important role in the onset and/or exacerbation of symptoms of functional gastrointestinal disorders. Here, we aimed to investigate whether exposure to a chronic and temporally unpredictable psychosocial stressor alters visceral and somatic nociception as well as anxiety-related behaviour. In male C57BL/6J mice, chronic stress was induced by repeated exposure to social defeat (SD, 2 h) and overcrowding (OC, 24 h) during 19 consecutive days.
View Article and Find Full Text PDFTransforming growth factors-beta (TGF-betas) signal through type I and type II serine-threonine kinase receptor complexes. During ligand binding, type II receptors recruit and phosphorylate type I receptors, triggering downstream signaling. BAMBI [bone morphogenetic protein (BMP) and activin membrane-bound inhibitor] is a transmembrane pseudoreceptor structurally similar to type I receptors but lacks the intracellular kinase domain.
View Article and Find Full Text PDFAlthough the repercussion of chronic treatment with large amounts of opioids on cognitive performance is a matter of concern, the effects of opioid drugs on passive avoidance learning have been scarcely studied. Here, we analyzed the effects of prolonged administration of heroin and methadone, as well as the impact of suffering repeated episodes of withdrawal on fear-motivated learning using the passive avoidance test. Mice received chronic treatment (39 days) with methadone (10 mg/kg/24 h), associated or not with repeated withdrawal episodes, or with heroin (5 mg/kg/12 h).
View Article and Find Full Text PDFSeveral studies open up the possibility that chronic exposure to opioid drugs in the CNS would interfere with learning and memory through a neurotoxic effect related to activation of apoptotic pathways. Here, we have analyzed the effects of prolonged heroin administration on sensorimotor and cognitive performance in mice, as well as the associated changes in brain expression of proteins regulating the extrinsic (FasL and Fas) and the mitochondrial (Bcl-2, Bcl-X(L), Bad and Bax) apoptotic pathways. Our findings indicate that chronic heroin did not interfere with mice performance in a battery of sensorimotor tests.
View Article and Find Full Text PDFObjectives: This study analyzes the effects of prolonged administration of methadone and withdrawal on sensorimotor and cognitive performance in mice and explores the associated changes in brain expression of proteins regulating the extrinsic (FasL, Fas, and caspase-8) and the mitochondrial (Bcl-2, Bcl-x(L), Bad, and Bax) apoptotic pathways.
Results: Our findings indicate that, although acute methadone administration impairs some sensorimotor abilities, tolerance to most of the deleterious effects develops after chronic administration. Cognitive abilities in the Morris water maze were impaired by chronic methadone and, to a greater extent, by exposure to precipitated withdrawal every week in the course of methadone treatment.
We have examined the effects of acute or chronic morphine and naltrexone-precipitated withdrawal on mouse brain apoptotic cell death. The associated changes in the expression of apoptosis regulatory proteins were also analyzed. After a single dose of morphine, no apoptotic cells were detected by TUNEL or active caspase-3 immunocytochemistry.
View Article and Find Full Text PDF