Publications by authors named "Monica T Yu Kimata"

Among Old World monkeys, pig-tailed macaques (Pt) are uniquely susceptible to human immunodeficiency virus type 1 (HIV-1), although the infection does not persist. We demonstrate that the susceptibility of Pt T cells to HIV-1 infection is due to the absence of postentry inhibition by a TRIM5 isoform. Notably, substitution of the viral infectivity factor protein, Vif, with that from pathogenic SIVmne enabled replication of HIV-1 in Pt T cells in vitro.

View Article and Find Full Text PDF

Background: Previous studies of human and simian immunodeficiency virus (HIV and SIV) have demonstrated that adaptive mutations selected during the course of infection alter viral replicative fitness, persistence, and pathogenicity. What is unclear from those studies is the impact of transmission on the replication and pathogenicity of the founding virus population. Using the SIV-macaque model, we examined whether the route of infection would affect the establishment and replication of two SIVmne variants of distinct in vitro and in vivo biological characteristics.

View Article and Find Full Text PDF

We previously showed that a slowly replicating, minimally pathogenic clone of simian immunodeficiency virus (SIV), SIVmneCl8, evolves increased ability to replicate in T cells with the onset of AIDS in pig-tailed macaques. Moreover, molecular clones derived from late stages of infection (SIVmne170 and SIVmne027) replicate to high levels in vivo compared to SIVmneCl8. Here, we investigated the role of rt mutations in SIVmne variant replication.

View Article and Find Full Text PDF

We investigated the role of ICAM-3 in DC-SIGN-mediated human immunodeficiency virus (HIV) infection of CD4(+) T cells. Our results demonstrate that ICAM-3 does not appear to play a role in DC-SIGN-mediated infection of CD4(+) T cells as virus is transmitted equally to ICAM-3(+) or ICAM-3(-) Jurkat T cells. However, HIV-1 replication is enhanced in ICAM-3(-) cells, suggesting that ICAM-3 may limit HIV-1 replication.

View Article and Find Full Text PDF

The C-type lectin DC-SIGN mediates the capture and transfer of simian immunodeficiency virus (SIV) from macaque dendritic cells (DCs) to permissive T-cells. To further identify the determinants in macaque DC-SIGN required for capture and transfer of virus, we created mutants containing deletions or point mutations in the extracellular domains, and tested their ability to capture and transmit SIV. We found that SIV bound to the carbohydrate recognition domain (CRD) of macaque DC-SIGN via the envelope protein.

View Article and Find Full Text PDF

Dendritic cells (DCs) are among the first cells encountered by human and simian immunodeficiency virus (HIV and SIV) following mucosal infection. Because these cells efficiently capture and transmit virus to T cells, they may play a major role in mediating HIV and SIV infection. Recently, a C-type lectin protein present on DCs, DC-specific ICAM-3-grabbing nonintegrin (DC-SIGN), was shown to efficiently bind and present HIV and SIV to CD4(+), coreceptor-positive cells in trans.

View Article and Find Full Text PDF

The replicative, cytopathic, and antigenic properties of simian immunodeficiency virus (SIV) variants influence its replication efficiency in vivo. To further define the viral properties and determinants that may be important for high-level replication in vivo and progression to AIDS, we compared a minimally pathogenic SIVmne molecular clone with two highly pathogenic variants cloned from late stages of infection. Both variants had evolved greater infectivity than the parental clone due to mutations in nef.

View Article and Find Full Text PDF