Publications by authors named "Monica T Rother"

Increasing fire severity and warmer, drier postfire conditions are making forests in the western United States (West) vulnerable to ecological transformation. Yet, the relative importance of and interactions between these drivers of forest change remain unresolved, particularly over upcoming decades. Here, we assess how the interactive impacts of changing climate and wildfire activity influenced conifer regeneration after 334 wildfires, using a dataset of postfire conifer regeneration from 10,230 field plots.

View Article and Find Full Text PDF

Climate warming is contributing to increases in wildfire activity throughout the western United States, leading to potentially long-lasting shifts in vegetation. The response of forest ecosystems to wildfire is thus a crucial indicator of future vegetation trajectories, and these responses are contingent upon factors such as seed availability, interannual climate variability, average climate, and other components of the physical environment. To better understand variation in resilience to wildfire across vulnerable dry forests, we surveyed conifer seedling densities in 15 recent (1988-2010) wildfires and characterized temporal variation in seed cone production and seedling establishment.

View Article and Find Full Text PDF

Climate change is increasing fire activity in the western United States, which has the potential to accelerate climate-induced shifts in vegetation communities. Wildfire can catalyze vegetation change by killing adult trees that could otherwise persist in climate conditions no longer suitable for seedling establishment and survival. Recently documented declines in postfire conifer recruitment in the western United States may be an example of this phenomenon.

View Article and Find Full Text PDF

Forest resilience to climate change is a global concern given the potential effects of increased disturbance activity, warming temperatures and increased moisture stress on plants. We used a multi-regional dataset of 1485 sites across 52 wildfires from the US Rocky Mountains to ask if and how changing climate over the last several decades impacted post-fire tree regeneration, a key indicator of forest resilience. Results highlight significant decreases in tree regeneration in the 21st century.

View Article and Find Full Text PDF