Skin-resident regulatory T cells (Tregs) play an irreplaceable role in orchestrating cutaneous immune homeostasis and repair, including the promotion of hair regeneration via the Notch signaling ligand Jagged-1 (Jag1). While skin Tregs are indispensable for facilitating tissue repair post-wounding, it remains unknown if Jag1-expressing skin Tregs impact wound healing. Using a tamoxifen inducible Foxp3Jag1 model, we show that loss of functional Jag1 in Tregs significantly delays the rate of full-thickness wound closure.
View Article and Find Full Text PDFRegulatory T-cells (Tregs) are a subset of T cells generated in the thymus with intrinsic immunosuppressive properties. Phase I clinical trials have shown safety and feasibility of Treg infusion to promote immune tolerance and new studies are ongoing to evaluate their efficacy. During heart transplantation, thymic tissue is routinely discarded providing an attractive source of Tregs.
View Article and Find Full Text PDFB cells have been implicated in transplant rejection via antibody-mediated mechanisms and more recently by presenting donor antigens to T cells. We have shown in patients with chronic antibody-mediated rejection that B cells control the indirect T cell alloresponses. To understand more about the role of B cells as antigen-presenting cells for CD4 T cell with indirect allospecificity, B cells were depleted in C57BL/6 mice, using an anti-CD20 antibody, prior to receiving MHC class I-mismatched (K ) skin.
View Article and Find Full Text PDFRegulatory T cells (Treg) are a subpopulation of T cells that maintain tolerance to self and limit other immune responses. They achieve this through different mechanisms including the release of extracellular vesicles (EVs) such as exosomes as shown by us, and others. One of the ways that Treg derived EVs inhibit target cells such as effector T cells is via the transfer of miRNA.
View Article and Find Full Text PDFPrevention of graft-versus-host disease (GVHD) is paramount for allogeneic hematopoietic stem cell transplantation (HSCT) to treat nonmalignant diseases. We previously reported that allogeneic HSCT for severe aplastic anemia (SAA) using the fludarabine, cyclophosphamide, and alemtuzumab (Campath-1H) (FCC) regimen is associated with a very low risk of GVHD and excellent clinical outcomes. We now report a single-center study of 45 patients with longer follow-up and investigation of lymphocyte recovery.
View Article and Find Full Text PDF