Publications by authors named "Monica Sadek"

The multi-attribute method (MAM), a liquid chromatography-mass spectrometry (LC-MS)-based peptide mapping method, has gained increased interest and applications in the biopharmaceutical industry. MAM can, in one method, provide targeted quantitation of multiple site-specific product quality attributes, as well as new peak detection. In this review, we focus on the scientific and regulatory considerations of using MAM in product quality attribute monitoring and quality control (QC) of therapeutic proteins.

View Article and Find Full Text PDF

New peak detection (NPD), as part of the LC-MS-based multi-attribute method (MAM), allows for sensitive and unbiased detection of new or changing site-specific attributes between a sample and reference that is not possible with conventional UV or fluorescence detection-based methods. MAM with NPD can serve as a purity test that can establish whether a sample and the reference are similar. The broad implementation of NPD in the biopharmaceutical industry has been limited by the potential presence of false positives or artifacts, which increase the analysis time and can trigger unnecessary investigations of product quality.

View Article and Find Full Text PDF

Multi-attribute method (MAM) using peptide map analysis with high resolution mass spectrometry is increasingly common in product characterization and the identification of critical quality attributes (CQAs) of biotherapeutic proteins. Capable of providing structural information specific to amino acid residues, quantifying relative abundance of product variants or degradants, and detecting profile changes between product lots, a robust MAM can replace multiple traditional methods that generate profile-based information for product release and stability testing. In an effort to provide informative and efficient analytical monitoring for monoclonal antibody (mAb) products, from early development to manufacturing quality control, we describe the desired MAM performance profile and address the major scientific challenges in MAM method validation.

View Article and Find Full Text PDF

Metal homeostasis poses a major challenge to microbes, which must acquire scarce elements for core metabolic processes. Methanobactin, an extensively modified copper-chelating peptide, was one of the earliest natural products shown to enable microbial acquisition of a metal other than iron. We describe the core biosynthetic machinery responsible for the characteristic posttranslational modifications that grant methanobactin its specificity and affinity for copper.

View Article and Find Full Text PDF

Methanotrophic bacteria convert methane to methanol using methane monooxygenase (MMO) enzymes. In many strains, either an iron-containing soluble (sMMO) or a copper-containing particulate (pMMO) enzyme can be produced depending on copper availability; the mechanism of this copper switch has not been elucidated. A key player in methanotroph copper homeostasis is methanobactin (Mbn), a ribosomally produced, post-translationally modified natural product with a high affinity for copper.

View Article and Find Full Text PDF