Cell Death Dis
December 2021
Non-exudative age-related macular degeneration (NE-AMD), the main cause of blindness in people above 50 years old, lacks effective treatments at the moment. We have developed a new NE-AMD model through unilateral superior cervical ganglionectomy (SCGx), which elicits the disease main features in C57Bl/6J mice. The involvement of oxidative stress in the damage induced by NE-AMD to the retinal pigment epithelium (RPE) and outer retina has been strongly supported by evidence.
View Article and Find Full Text PDFNonexudative age-related macular degeneration (NE-AMD) represents the leading cause of blindness in the elderly. Currently, there are no available treatments for NE-AMD. We have developed a NE-AMD model induced by superior cervical ganglionectomy (SCGx) in C57BL/6J mice, which reproduces the disease hallmarks.
View Article and Find Full Text PDFNeuroinflammatory diseases are characterized by blood-brain barrier disruption (BBB) and leukocyte infiltration. We investigated the involvement of monocyte recruitment in visual pathway damage provoked by primary optic neuritis (ON) induced by a microinjection of bacterial lipopolysaccharide (LPS) into the optic nerve from male Wistar rats. Increased Evans blue extravasation and cellularity were observed at 6 h post-LPS injection.
View Article and Find Full Text PDFRetinal ischemia is a condition associated with several degenerative diseases leading to visual impairment and blindness worldwide. Currently, there is no highly effective therapy for ischemic retinopathies. This study was designed to determine possible benefits of pre-exposure to enriched environment against retinal damage induced by acute ischemia.
View Article and Find Full Text PDFDiabetic retinopathy is a leading cause of reduced visual acuity and acquired blindness. Available treatments are not completely effective. We analyzed the effect of environmental enrichment on retinal damage induced by experimental diabetes in adult Wistar rats.
View Article and Find Full Text PDFWe focused on the participation of GAP1, BAP2, and AGP1 in L-phenylalanine transport in yeast. In order to study the physiological functions of GAP1, BAP2, and AGP1 in L-phenylalanine transport, we examined the kinetics, substrate specificity, and regulation of these systems, employing isogenic haploid strains with the respective genes disrupted individually and in combination. During the characterization of phenylalanine transport, we noted important regulatory phenomena associated with these systems.
View Article and Find Full Text PDFDiabetic retinopathy is a leading cause of acquired blindness in adults, mostly affected by type 2 diabetes mellitus (T2DM). We have developed an experimental model of early T2DM in adult rats which mimics some features of human T2DM at its initial stages, and provokes significant retinal alterations. We investigated the effect of ischemic conditioning on retinal changes induced by the moderate metabolic derangement.
View Article and Find Full Text PDFLight-induced damage is a widely used model to study retinal degeneration. We examined whether bacterial lipopolysaccharide (LPS) protects the retina against light-induced injury. One day before intense light exposure for 24 h, rats were intravitreally injected with LPS in one eye and vehicle in the contralateral eye.
View Article and Find Full Text PDFGlutamate is the main excitatory neurotransmitter in the retina, but it is toxic when present in excessive amounts. It is well known that NO is involved in glutamate excitotoxicity, but information regarding the possibility that NO-related species could reciprocally affect glutamate synaptic levels was not previously provided. The dependence of glutamatergic neurons upon glia via the glutamate/glutamine cycle to provide the precursor for neurotransmitter glutamate is well established.
View Article and Find Full Text PDFGlaucoma is a leading cause of acquired blindness which may involve an ischemic-like insult to retinal ganglion cells and optic nerve head. We investigated the effect of a weekly application of brief ischemia pulses (ischemic conditioning) on the rat retinal damage induced by experimental glaucoma. Glaucoma was induced by weekly injections of chondroitin sulfate (CS) in the rat eye anterior chamber.
View Article and Find Full Text PDFDiabetic retinopathy is a leading cause of acquired blindness. Available treatments are not very effective. We investigated the effect of a weekly application of retinal ischemia pulses (ischemic conditioning) on retinal damage induced by experimental diabetes.
View Article and Find Full Text PDFGlaucoma is a leading cause of blindness. Although ocular hypertension is the most important risk factor, several concomitant factors such as elevation of glutamate and decrease in gamma-aminobutyric acid (GABA) levels, disorganized NO metabolism, and oxidative damage could significantly contribute to the neurodegeneration. The aim of this report was to analyze the effect of melatonin on retinal glutamate clearance, GABA concentrations, NO synthesis, and retinal redox status, as well as on functional and histological alterations provoked by chronic ocular hypertension induced by intracameral injections of hyaluronic acid (HA) in the rat eye.
View Article and Find Full Text PDFRetinal ischemia could provoke blindness and there is no effective treatment against retinal ischemic damage. Brief intermittent ischemia applied during the onset of reperfusion (i.e.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
August 2009
Purpose: Retinal ischemia may provoke blindness. There is no effective treatment against retinal ischemic damage. The authors investigated whether brief intermittent ischemia applied during the onset of reperfusion (i.
View Article and Find Full Text PDFUveitis is a common ophthalmic disorder that can be induced in hamsters by a single intravitreal injection of bacterial lipopolysaccharide (LPS). To examine the therapeutic effects of melatonin on uveitis, a pellet of melatonin was implanted subcutaneously 2 hours before the intravitreal injection of either vehicle or LPS. Both 24 hours and 8 days after the injection, inflammatory responses were evaluated in terms of i) the integrity of the blood-ocular barrier, ii) clinical signs, iii) histopathological studies, and iv) retinal function.
View Article and Find Full Text PDF