Publications by authors named "Monica Rosenblueth"

We present new genomes from the bacterial symbiont Candidatus Dactylopiibacterium carminicum obtained from non-domesticated carmine cochineals belonging to the scale insect Dactylopius (Hemiptera: Coccoidea: Dactylopiidae). As Dactylopiibacterium has not yet been cultured in the laboratory, metagenomes and metatranscriptomics have been key in revealing putative symbiont functions. Dactylopiibacterium is a nitrogen-fixing beta-proteobacterium that may be vertically transmitted and shows differential gene expression inside the cochineal depending on the tissue colonized.

View Article and Find Full Text PDF

Inga vera and Lysiloma tree legumes form nodules with Bradyrhizobium spp. from the japonicum group that represent novel genomospecies, for which we describe here using genome data, symbiovars lysilomae, lysilomaefficiens and ingae. Genes encoding Type three secretion system (TTSS) that could affect host specificity were found in ingae but not in lysilomae nor in lysilomaefficiens symbiovars and uptake hydrogenase hup genes (that affect nitrogen fixation) were observed in bradyrhizobia from the symbiovars ingae and lysilomaefficiens.

View Article and Find Full Text PDF

Scorpions were among the first animals on land around 430 million years ago. Like many arachnids, scorpions have evolved complex venoms used to paralyze their prey and for self-defense. Here we sequenced and analyzed the metagenomic DNA from venom glands from Vaejovis smithi scorpions.

View Article and Find Full Text PDF

Corn and common bean have been cultivated together in Mesoamerica for thousands of years in an intercropping system called "milpa," where the roots are intermingled, favoring the exchange of their microbiota, including symbionts such as rhizobia. In this work, we studied the genomic expression of Ch24-10 (by RNA-seq) after a 2-h treatment in the presence of root exudates of maize and bean grown in monoculture and milpa system under hydroponic conditions. In bean exudates, rhizobial genes for nodulation and degradation of aromatic compounds were induced; while in maize, a response of genes for degradation of mucilage and ferulic acid was observed, as well as those for the transport of sugars, dicarboxylic acids and iron.

View Article and Find Full Text PDF

Background: Spiroplasma is a widely distributed endosymbiont of insects, arthropods, and plants. In insects, Spiroplasma colonizes the gut, hemolymph, and reproductive organs of the host. Previous metagenomic surveys of the domesticated carmine cochineal Dactylopius coccus and the wild cochineal D.

View Article and Find Full Text PDF

Health depends on the diet and a vegetal diet promotes health by providing fibres, vitamins and diverse metabolites. Remarkably, plants may also provide microbes. Fungi and bacteria that reside inside plant tissues (endophytes) seem better protected to survive digestion; thus, we investigated the reported evidence on the endophytic origin of some members of the gut microbiota in animals such as panda, koala, rabbits and tortoises and several herbivore insects.

View Article and Find Full Text PDF

Scorpions are predator arachnids of ancient origin and worldwide distribution. Two scorpion species, Vaejovis smithi and Centruroides limpidus, were found to harbor two different Mollicutes phylotypes: a Scorpion Mycoplasma Clade (SMC) and Scorpion Group 1 (SG1). Here we investigated, using a targeted gene sequencing strategy, whether these Mollicutes were present in 23 scorpion morphospecies belonging to the Vaejovidae, Carboctonidae, Euscorpiidae, Diplocentridae, and Buthidae families.

View Article and Find Full Text PDF

The scale insect produces high amounts of carminic acid, which has historically been used as a pigment by pre-Hispanic American cultures. Nowadays carmine is found in food, cosmetics, and textiles. Metagenomic approaches revealed that spp.

View Article and Find Full Text PDF

Cereals such as maize, rice, wheat and sorghum are the most important crops for human nutrition. Like other plants, cereals associate with diverse bacteria (including nitrogen-fixing bacteria called diazotrophs) and fungi. As large amounts of chemical fertilizers are used in cereals, it has always been desirable to promote biological nitrogen fixation in such crops.

View Article and Find Full Text PDF

The domesticated carmine cochineal Dactylopius coccus (scale insect) has commercial value and has been used for more than 500 years for natural red pigment production. Besides the domesticated cochineal, other wild Dactylopius species such as Dactylopius opuntiae are found in the Americas, all feeding on nutrient poor sap from native cacti. To compensate nutritional deficiencies, many insects harbor symbiotic bacteria which provide essential amino acids or vitamins to their hosts.

View Article and Find Full Text PDF

Functional gene transfers from the mitochondrion to the nucleus are ongoing in angiosperms and have occurred repeatedly for all 15 ribosomal protein genes, but it is not clear why some of these genes are transferred more often than others nor what the balance is between DNA- and RNA-mediated transfers. Although direct insertion of mitochondrial DNA into the nucleus occurs frequently in angiosperms, case studies of functional mitochondrial gene transfer have implicated an RNA-mediated mechanism that eliminates introns and RNA editing sites, which would otherwise impede proper expression of mitochondrial genes in the nucleus. To elucidate the mechanisms that facilitate functional gene transfers and the evolutionary dynamics of the coexisting nuclear and mitochondrial gene copies that are established during these transfers, we have analyzed rpl5 genes from 90 grasses (Poaceae) and related monocots.

View Article and Find Full Text PDF

Dactylopius species, known as cochineal insects, are the source of the carminic acid dye used worldwide. The presence of two Wolbachia strains in Dactylopius coccus from Mexico was revealed by PCR amplification of wsp and sequencing of 16S rRNA genes. A metagenome analysis recovered the genome sequences of Candidatus Wolbachia bourtzisii wDacA (supergroup A) and Candidatus Wolbachia pipientis wDacB (supergroup B).

View Article and Find Full Text PDF

Here we report the presence of the entomopathogenic nematode Rhabditis (Rhabditoides) regina affecting white grubs (Phyllophaga sp. and Anomala sp.) in Mexico and R.

View Article and Find Full Text PDF

We studied fungal species associated with the carmine cochineal Dactylopius coccus and other non-domesticated Dactylopius species using culture-dependent and -independent methods. Thirty seven fungi were isolated in various culture media from insect males and females from different developmental stages and Dactylopius species. 26S rRNA genes and ITS sequences, from cultured fungal isolates revealed different species of Cryptococcus, Rhodotorula, Debaryomyces, Trametes, and Penicillium, which are genera newly associated with Dactylopius.

View Article and Find Full Text PDF

Scorpions are considered 'living fossils' that have conserved ancestral anatomical features and have adapted to numerous habitats. However, their gut microbiota diversity has not been studied. Here, we characterized the gut microbiota of two scorpion species, Vaejovis smithi and Centruroides limpidus.

View Article and Find Full Text PDF

This work is aimed to resolve the complex molecular evolution of cytochrome bd ubiquinol oxidase, a nearly ubiquitous bacterial enzyme that is involved in redox balance and bioenergetics. Previous studies have created an unclear picture of bd oxidases phylogenesis without considering the existence of diverse types of bd oxidases. Integrated approaches of genomic and protein analysis focused on proteobacteria have generated a molecular classification of diverse types of bd oxidases, which produces a new scenario for interpreting their evolution.

View Article and Find Full Text PDF

Scale insects (Hemiptera: Coccoidae) constitute a very diverse group of sap-feeding insects with a large diversity of symbiotic associations with bacteria. Here, we present the complete genome sequence, metabolic reconstruction, and comparative genomics of the flavobacterial endosymbiont of the giant scale insect Llaveia axin axin. The gene repertoire of its 309,299 bp genome was similar to that of other flavobacterial insect endosymbionts though not syntenic.

View Article and Find Full Text PDF

An emphasis is made on the diversity of nutrients that rhizosphere bacteria may encounter derived from roots, soil, decaying organic matter, seeds, or the microbial community. This nutrient diversity may be considered analogous to a buffet and is contrasting to the hypothesis of oligotrophy at the rhizosphere. Different rhizosphere bacteria may have preferences for some substrates and this would allow a complex community to be established at the rhizosphere.

View Article and Find Full Text PDF

Animal guts and plant roots have absorption roles for nutrient uptake and converge in harboring large, complex, and dynamic groups of microbes that participate in degradation or modification of nutrients and other substances. Gut and root bacteria regulate host gene expression, provide metabolic capabilities, essential nutrients, and protection against pathogens, and seem to share evolutionary trends.

View Article and Find Full Text PDF

Flavobacteria and Enterobacteriaceae have been previously reported as scale insect endosymbionts. The purpose of this work was twofold: first, to screen different scale insect families for the presence of these endosymbionts by PCR analyses and second, to elucidate the history of cophylogeny between these bacteria and the insects by analysing a portion of 16S rRNA and 18S rRNA gene sequences by two reconciliation tools, CoRe-PA and Jane. From a survey of 27 scale insects within seven families, we identified Flavobacteria and Enterobacteriaceae as coexisting in ten species that belong to the Ortheziidae, Monophlebidae, Diaspididae and Coccidae families, and we frequently found two closely related enterobacteria harboured in the same individual.

View Article and Find Full Text PDF
Article Synopsis
  • Mobile extrachromosomal elements play a key role in how bacteria, like Rhizobium and Agrobacterium, adapt to their environments, with about half of their genome found in these elements.
  • These extrachromosomal replicons (ERs) code for important functions that contribute to survival, adaptation, and plasmid stability, although plasmid loss is frequent when rhizobia are subcultured.
  • Recent research using transcriptomic analysis on Rhizobium phaseoli in maize and bean roots has revealed significant findings about the expression of extrachromosomal genes, highlighting their importance in interactions with plant rootlets.
View Article and Find Full Text PDF

In many cases, bacterial pathogens are close relatives to nonpathogens. Pathogens seem to be limited lineages within nonpathogenic bacteria. Nonpathogenic isolates are generally more diverse and widespread in the environment and it is generally considered that environmental bacteria do not pose a risk to human health as clinical isolates do; this may not be the case with mycobacteria, but environmental mycobacteria have not been well studied.

View Article and Find Full Text PDF

Three transposon mutants of Rhizobium tropici CIAT899 affected in lipopolysaccharide (LPS) biosynthesis were characterized and their maize rhizosphere and endophytic root colonization abilities were evaluated. The disrupted genes coded for the following putative products: the ATPase component of an O antigen ABC-2 type transporter (wzt), a nucleotide-sugar dehydratase (lpsbeta2) and a bifunctional enzyme producing GDP-mannose (noeJ). Electrophoretic analysis of affinity purified LPS showed that all mutants lacked the smooth LPS bands indicating an O antigen minus phenotype.

View Article and Find Full Text PDF