In animal models, exposure to excess testosterone during gestation induces polycystic ovary syndrome (PCOS)-like reproductive and metabolic traits in female offspring, suggesting that the hyperandrogenemic intrauterine environment may have a role in the etiology of PCOS. Additionally, few studies have also addressed metabolic and reproductive outcomes in male offspring. In the present study, the intravenous glucose tolerance test (IGTT) was used to assess the insulin-glucose homeostasis at various ages during sexual development in male sheep born to testosterone-treated ewes.
View Article and Find Full Text PDFHyperandrogenemia and metabolic disturbances during postnatal life are strongly linked both to polycystic ovary syndrome and other conditions that arise from prenatal exposure to androgen excess. In an animal model of this condition, we reported that insulin sensitivity (IS) was lower in young female sheep born to testosterone-treated mothers versus sheep born to non-exposed mothers (control). This lower insulin sensitivity remains throughout reproductive life.
View Article and Find Full Text PDFThe administration of testosterone to pregnant sheep to resemble fetal programming of the polycystic ovary syndrome could alter other hormones/factors of maternal origin with known effects on fetal growth. Hence, we studied the weekly profile of insulin, progesterone and glucose during a treatment with testosterone propionate given biweekly from weeks 5 to 17 of pregnancy (term at 21 weeks) and checked the outcome of their fetuses at 17 weeks of gestation after C-section. Control dams were only exposed to the vehicle of the hormone.
View Article and Find Full Text PDFPrenatal exposure to excess testosterone induces reproductive disturbances in both female and male sheep. In females, it alters the hypothalamus-pituitary-ovarian axis. In males, prenatal testosterone excess reduces sperm count and motility.
View Article and Find Full Text PDFDisruption of the maternal environment during pregnancy is a key contributor to offspring diseases that develop in adult life. To explore the impact of chronodisruption during pregnancy in primates, we exposed pregnant capuchin monkeys to constant light (eliminating the maternal melatonin rhythm) from the last third of gestation to term. Maternal temperature and activity circadian rhythms were assessed as well as the newborn temperature rhythm.
View Article and Find Full Text PDFThe reprograming effects of prenatal testosterone (T) treatment on postnatal reproductive parameters have been studied extensively in females of several species but similar studies in males are limited. We recently found that prenatal T treatment increases Sertoli cell number and reduced spermatogenesis in adult rams. If such disruptions are manifested early in life and involve changes in testicular paracrine environment remain to be explored.
View Article and Find Full Text PDFExposure to excess testosterone (T) during fetal life has a profound impact on the metabolic and reproductive functions in the female's postnatal life. However, less is known about the effects of excess testosterone in males. The aim of the present study was to evaluate the impact (consequences) of an excess of T during fetal development on mature male testis.
View Article and Find Full Text PDFThe reproductive system is extremely susceptible to insults from exposure to exogenous steroids during development. Excess prenatal testosterone exposure programs neuroendocrine, ovarian, and metabolic deficits in the female, features seen in women with polycystic ovary disease. The objective of this study was to determine whether prenatal testosterone excess also disrupts the male reproductive system, using sheep as a model system.
View Article and Find Full Text PDFContext: An important proportion of male members of polycystic ovary syndrome (PCOS) families exhibit insulin resistance and related metabolic defects. However, the reproductive phenotypes in first-degree male relatives of PCOS women have been described less often.
Objective: The objective of the study was to evaluate the pituitary-testicular function in sons of women with PCOS during different stages of life: early infancy, childhood, and adulthood.
The infralimbic cortical area is a good candidate to send processed motivational signals to initiate the arousing and autonomic responses that characterize appetitive behaviors. To test this hypothesis we enticed hungry rats with food while assessing locomotion (as an index of arousal level) and temperature responses, and evaluated Fos immunoreactivity (IR) in the infralimbic area and in subcortical nuclei involved in thermoregulation or arousal. We also recorded from single infralimbic neurons in freely moving rats while enticing them with food.
View Article and Find Full Text PDFWhen food is available during a restricted and predictable time of the day, animals show increased locomotor and food searching behaviors before the anticipated daily meal. We had shown that histamine-containing neurons are the only aminergic neurons related to arousal that become active in anticipation of an upcoming meal. To further map, the brain regions involved in the expression of the feeding-anticipatory behavior, we quantified the expression of Fos in hypothalamic areas involved in arousal.
View Article and Find Full Text PDF