Publications by authors named "Monica R Esopi"

Narrowband ultraviolet (UV) photodetectors are highly desired in multiple areas. Photodetectors based on organic-inorganic nanocomposites offer high sensitivity, widely adjustable response range, light weight, and low-temperature solution processibility. However, the broad absorption range of organic and inorganic semiconductor materials makes it difficult to achieve a narrowband detection feature for nanocomposite photodetectors.

View Article and Find Full Text PDF

Lightweight and flexible ultraviolet (UV) photodetectors (PDs) have wide applications and have attracted more attention. PDs using organic and inorganic nanocomposites as active layers with a photodiode configuration could achieve photomultiplication and narrowband photoresponse via the control of microstructure and thickness of active layers. Here, we fabricated flexible UV PDs on indium tin oxide-coated poly(ethylene terephthalate) substrates with a nanocomposite active layer composed of ZnO nanoparticles blended with a wide band gap conjugated polymer, poly[(9,9-dioctylfluorenyl-2,7-diyl)- alt- co-(bithiophene)] (F8T2).

View Article and Find Full Text PDF

Organic-inorganic hybrid ultraviolet photodetectors with tunable spectral response are desirable for many different applications. In this work, we blended poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine] (PTAA) with ZnO nanoparticles in weight ratios of 1 : 1 and 2 : 1 to create charge traps within the active layers for devices with the conventional structure ITO/PEDOT : PSS/PTAA : ZnO/BCP/Al. Thin (150-200 nm) and thick (1400-1900 nm) active layers were employed to utilize charge collection narrowing (CCN).

View Article and Find Full Text PDF

On the right path: Based on DFT calculations (incorporating the role of water solvation) of the activation barriers of elementary steps, a new path that leads to methane and ethylene for CO(2) electroreduction on Cu(111) was identified. Methane formation proceeds through reduction of CO to COH (path II, see picture), which leads to CH(x) species that can produce both methane and ethylene, as observed experimentally.

View Article and Find Full Text PDF