Purpose: To uncover the underpinnings of acquired resistance (AR) to immunotherapy (IO), we determined whether distinctive clinico-pathological, radiomic and peripheral blood (PB) immune-inflammatory features reflect oligo- and systemic (sys)-AR in advanced NSCLC patients undergoing immune checkpoints inhibitors.
Experimental Design: On 105 consecutive IO-treated advanced NSCLC, PB immunophenotypes, cytokines and CT-derived radiomic features (RFs), extracted from primary and merged metastatic lesions, were prospectively collected at baseline (T0) and first disease assessment (T1, 9-12 weeks), and their delta (Δ) variation [(T1-T0)/T0] computed. AR, defined as progression after initial response (complete/partial) or stable disease ≥ 6 months, was subdivided according to the number of new and/or progressive lesions in oligoAR (≤3) and sysAR (>3).
Objectives: Despite the outstanding results achieved by osimertinib for the treatment of advanced EGFR-mutated NSCLC, the development of resistance is almost inevitable. While molecular mechanism responsible for osimertinib resistance are being mostly revealed, the definition of predictive biomarkers is crucial in order to identify patients at higher risk of progression and optimize treatment strategy.
Materials And Methods: This is a prospective single-center study aimed to assess the potential role of liquid biopsy and 18F-FDG PET/CT derived metabolic parameters as noninvasive predictive biomarkers of osimertinib outcomes in advanced EGFR-mutated NSCLC patients.
The combination of BRAF and MEK inhibitors demonstrated significant clinical benefit in patients with BRAF-mutant non-small cell lung cancer (NSCLC). However, the molecular mechanisms of acquired resistance to BRAF and MEK inhibition in NSCLC are still unknown. Herein, we report a case of a 76-year-old man with a history of smoking who was diagnosed with BRAF V600E-mutant lung adenocarcinoma (PD-L1 > 50%) and subsequently candidate to first-line therapy with pembrolizumab.
View Article and Find Full Text PDFThe study investigated the relationship between serum proinflammatory cytokine levels, cholesterol metabolism, and clinical outcome in cancer patients undergoing immune checkpoint inhibitors (ICIs). Peripheral blood was collected before therapy from ICI-treated advanced cancer patients. We retrospectively assessed plasma total cholesterol (TC), ABCA1- and ABCG1-mediated cholesterol efflux (CE), passive diffusion (PD), cholesterol loading capacity (CLC), and serum IL-6, IL-10, and TNF-α.
View Article and Find Full Text PDFIntroduction: Immune checkpoint inhibitors (ICIs) became the standard of care for several solid tumors. A limited fraction of patients (pts) achieves a long-term benefit. Plasmatic and intracellular cholesterol levels have emerged as promising biomarkers.
View Article and Find Full Text PDFBackground: Operable stage I-III non-small cell lung cancer (NSCLC) has a high risk of recurrence, mainly due to remnant clones of the disease defined as minimal residual disease (MRD). Adjuvant chemotherapy has a limited efficacy in reducing the risk of relapse, and prognostic as well as predictive biomarkers in this context are currently missing.
Methods: We performed a systematic review to evaluate the state of the art about the role of circulating tumor DNA detection through liquid biopsy for the assessment of MRD in resected early-stage NSCLC patients.
Introduction: Targeting Kirsten Rat Sarcoma (KRAS) has been deemed impossible for long time, but new drugs have recently demonstrated promising results. Evidence on the outcome of KRAS-mutant advanced-NSCLC treated with new standard regimens are still scarce. Thus, we aimed at assessing the incidence and clinical impact of KRAS mutations in a real-life population of advanced-NSCLC, exploring the prognostic significance of distinct alterations.
View Article and Find Full Text PDF