In eukaryotic cells, inefficient splicing is surprisingly common and leads to the degradation of transcripts with retained introns. How pre-mRNAs are committed to nuclear decay is unknown. Here, we uncover a mechanism by which specific intron-containing transcripts are targeted for nuclear degradation in fission yeast.
View Article and Find Full Text PDFWe uncovered a novel role for the spliceosome in regulating mRNA expression levels that involves splicing coupled to RNA decay, which we refer to as spliceosome-mediated decay (SMD). Our transcriptome-wide studies identified numerous transcripts that are not known to have introns but are spliced by the spliceosome at canonical splice sites in Saccharomyces cerevisiae. Products of SMD are primarily degraded by the nuclear RNA surveillance machinery.
View Article and Find Full Text PDFTDP-43 is a nuclear protein implicated in the pathogenesis of several neurodegenerative diseases such as amyotrophic lateral sclerosis and frontotemporal lobar degeneration, with broad involvement in numerous stages of RNA processing ranging from transcription to translation. In diseased neurons, TDP-43 mostly aggregates in the cytoplasm, suggesting that a loss of protein function in the nucleus may play an important role in neurodegeneration. A better understanding of TDP-43 general nuclear functions is therefore an essential step to evaluate this possibility.
View Article and Find Full Text PDFGluten sensitivity is an autoimmune disease that usually causes intestinal atrophy resulting in a malabsorption syndrome known as celiac disease. However, gluten sensitivity may involve several organs and is often associated with extraintestinal manifestations. Typically, patients with celiac disease have circulating anti-tissue transglutaminase and anti-gliadin antibodies.
View Article and Find Full Text PDFThe number of autoimmune disorders that may involve the nervous system is increasing. The diagnosis of neurological involvement in the context of systemic diseases may be helped by the detection of autoantibodies reacting against neural autoantigens. If the autoantigen is not known but the target tissue is suspected, immunohistochemistry is one of the main techniques used to certify the presence of autoantibodies.
View Article and Find Full Text PDF