Blasts from different patients with acute myeloid leukemia (AML) vary in the agent(s) to which they are most responsive. With a myriad of novel agents to evaluate, there is a lack of predictive biomarkers to precisely assign targeted therapies to individual patients. Primary AML cells often survive poorly in vitro, thus confounding conventional cytotoxicity assays.
View Article and Find Full Text PDFCells from patients with acute myeloid leukemia (AML) that remain dormant and protected by stromal cells may escape effects of chemotherapy. We modeled dormancy in vitro and investigated the ability of Bcl-2 inhibitors ABT-199 and ABT-737 to overcome chemoprotection of dormant cells. CD34-enriched primary AML cells with aberrant leukemia-associated phenotypes (LAPs) were cultured on stromal cells.
View Article and Find Full Text PDFDormant leukaemia initiating cells in the bone marrow niche are a crucial therapeutic target for total eradication of acute myeloid leukaemia. To study this cellular subset we created and validated an model employing the cell line TF-1a, treated with Transforming Growth Factor β1 (TGFβ1) and a mammalian target of rapamycin inhibitor. The treated cells showed decreases in total RNA, Ki-67 and CD71, increased aldehyde dehydrogenase activity, forkhead box 03A (FOX03A) nuclear translocation and growth inhibition, with no evidence of apoptosis or differentiation.
View Article and Find Full Text PDFThe BH3-only apoptosis agonists BAD and NOXA target BCL-2 and MCL-1 respectively and co-operate to induce apoptosis. On this basis, therapeutic drugs targeting BCL-2 and MCL-1 might have enhanced activity if used in combination. We identified anti-leukaemic drugs sensitising to BCL-2 antagonism and drugs sensitising to MCL-1 antagonism using the technique of dynamic BH3 profiling, whereby cells were primed with drugs to discover whether this would elicit mitochondrial outer membrane permeabilisation in response to BCL-2-targeting BAD-BH3 peptide or MCL-1-targeting MS1-BH3 peptide.
View Article and Find Full Text PDFDirect co-operation between sensitiser molecules BAD and NOXA in mediating apoptosis suggests that therapeutic agents which sensitise to BAD may complement agents which sensitise to NOXA. Dynamic BH3 profiling is a novel methodology that we have applied to the measurement of complementarity between sensitiser BH3 peptide mimetics and therapeutic agents. Using dynamic BH3 profiling, we show that the agent TG02, which downregulates MCL-1, sensitises to the BCL-2-inhibitory BAD-BH3 peptide, whereas the BCL-2 antagonist ABT-199 sensitises to MCL-1 inhibitory NOXA-BH3 peptide in acute myeloid leukaemia (AML) cells.
View Article and Find Full Text PDFMechanistic/mammalian target of rapamycin (mTOR) activity drives a number of key metabolic processes including growth and protein synthesis. Inhibition of the mTOR pathway promotes cellular dormancy. Since cells from patients with acute myeloid leukaemia (AML) can be phenotypically dormant (quiescent), we examined biomarkers of their mTOR pathway activity concurrently with Ki-67 and CD71 (indicators of cycling cells) by quantitative flow cytometry.
View Article and Find Full Text PDFRegulation of ABCB1 (P-glycoprotein/Pgp) in AML was investigated. In a historical cohort with Pgp and transcriptional regulator expression profiling data available (n=141), FOXO1 correlated with Pgp protein expression. This was confirmed in an independent cohort (n=204).
View Article and Find Full Text PDFBackground: Dormant cells are characterised by low RNA synthesis. In contrast, cancer cells can be addicted to high RNA synthesis, including synthesis of survival molecules. We hypothesised that dormant cancer cells, already low in RNA, might be sensitive to apoptosis induced by RNA Polymerase II (RP2) inhibitors that further reduce RNA synthesis.
View Article and Find Full Text PDFBackground: The CD34+CD38- subset of AML cells is enriched for resistance to current chemotherapeutic agents and considered to contribute to disease progression and relapse in Acute Myeloid Leukaemia (AML) patients following initial treatment.
Methods: Chemosensitivity in phenotypically defined subsets from 34 primary AML samples was measured by flow cytometry following 48 hr in vitro treatment with gemtuzumab ozogamicin (GO, Mylotarg) and the farnesyltransferase inhibitor tipifarnib/zarnestra. The DNA damage response was measured using flow cytometry, immunofluorescence and immunohistochemistry.
The novel multi-kinase inhibitor TG02 has selectivity against cell cycle and transcriptional cyclin dependent kinases (CDKs) as well as fms-like tyrosine kinase receptor-3 (FLT3). Inhibition of transcriptional CDKs preferentially depletes short-lived proteins such as MCL1. We evaluated the in vitro toxicity of TG02 to primary acute myeloid leukaemia (AML) cells in the presence of survival signalling pathway activation by cytokines and fibronectin.
View Article and Find Full Text PDFBackground: Aurora kinases play an essential role in orchestrating chromosome alignment, segregation and cytokinesis during mitotic progression, with both aurora-A and B frequently over-expressed in a variety of human malignancies. Over-expression of the ABC drug transporter proteins P-glycoprotein (Pgp) and Breast cancer resistance protein (BCRP) is a major obstacle for chemotherapy in many tumour types with Pgp conferring particularly poor prognosis in acute myeloid leukaemia (AML). Barasertib-hQPA is a highly selective inhibitor of aurora-B kinase that has shown tumouricidal activity against a range tumour cell lines including those of leukaemic AML origin.
View Article and Find Full Text PDFAurora kinases play an essential role in orchestrating chromosome alignment, segregation, and cytokinesis during mitotic progression and both aurora-A and B are frequently overexpressed in a variety of human malignancies. In this study, we report the effects of AZD1152-HQPA, a highly selective inhibitor of aurora-B kinase, in acute myeloid leukemia (AML) cell lines and primary samples. We show that AZD1152-HQPA inhibits the phosphorylation of Histone H3 (pHH3) on serine 10 resulting in polyploid cells, apoptosis, and loss of viability in a panel of AML cell lines.
View Article and Find Full Text PDFPurpose: Acute myeloid leukemia cells with an internal tandem duplication mutation of FLT3 (FLT3-ITD) have effective DNA repair mechanisms on exposure to drugs. Despite this, the phenotype is not associated with primary resistant disease. We show defects in the response of mutant FLT3 AML cells to the S-phase drug clofarabine that could account for the apparent contradiction.
View Article and Find Full Text PDFFLT3-internal tandem duplication (ITD) mutations are heterogeneous with regards to length and proportion of DNA harbouring the mutation and the expression level of FLT3 also varies widely, however very little is known about the biological effects of these variables. We studied FLT3-associated biological parameters in 322 acute myeloid leukaemia samples to establish their importance. Expression of total FLT3 transcripts was shown to be significantly higher in the FLT3-ITD cohort (n = 121) compared to the wild-type cohort (P = 0.
View Article and Find Full Text PDFBr J Haematol
May 2009
The acute myeloid leukaemia (AML)14 trial addressed four therapeutic questions in patients predominantly aged over 60 years with AML and High Risk Myelodysplastic Syndrome: (i) Daunorubicin 50 mg/m(2) vs. 35 mg/m(2); (ii) Cytarabine 200 mg/m(2) vs. 400 mg/m(2) in two courses of DA induction; (iii) for part of the trial, patients allocated Daunorubicin 35 mg/m(2) were also randomized to receive, or not, the multidrug resistance modulator PSC-833 in a 1:1:1 randomization; and (iv) a total of three versus four courses of treatment.
View Article and Find Full Text PDFPurpose: P-glycoprotein (Pgp) is a major prognostic factor for chemotherapy failure in acute myeloid leukemia (AML). This study compared the influence of genetic and leukemia-specific factors on Pgp.
Experimental Design: Eight hundred and seventeen samples were studied prospectively for Pgp protein expression and function and G1199A, G2677T, and C3435T polymorphisms in the encoding gene ABCB1.
Objective: P-glycoprotein (pgp) is a membrane transporter encoded by the multidrug resistance (MDR1, ABCB1) gene. Pgp is a poor prognostic factor in elderly patients with acute myeloid leukemia (AML). In addition to its role in drug efflux, pgp has been implicated in cellular cholesterol homeostasis.
View Article and Find Full Text PDFThe measurement of functional and phenotypic P-glycoprotein by flow cytometry is suitable for cells in suspension, and is particularly appropriate for blood and bone marrow cells. We describe a functional assay for P-glycoprotein using rhodamine 123, an assay for daunorubicin accumulation, and an assay to measure P-glycoprotein levels using the MRK16 antibody. Our protocols include the use of an anti-CD45 antibody for the identification of leukemic blasts.
View Article and Find Full Text PDFObjective: Ceramide, an intermediate of apoptosis induction in response to chemotherapy, can be detoxified by glycosylation at the cytoplasmic surface of the Golgi membrane. P-glycoprotein (p-gp) might augment ceramide glycosylation by translocating glucosylceramide (GC) across the Golgi membrane. We aimed to show that glucosylceramide synthase (GCS) activity is linked to p-gp expression and resistance to ceramide-induced apoptosis in acute myeloid leukemia (AML).
View Article and Find Full Text PDFP-glycoprotein (pgp), a membrane efflux pump, is recognized to have an anti-apoptotic function. Internal tandem duplications (ITDs) of the Fms-like tyrosine kinase 3 (FLT3) receptor are the most common mutations in acute myeloid leukaemia (AML). Both ITDs and pgp positivity confer an adverse clinical prognosis.
View Article and Find Full Text PDFThe dithiol-reducing thioredoxin/thioredoxin reductase system normally maintains the reduced state of key enzymes responsible for the cell's anti-oxidant defences. We therefore addressed the question of whether AW 464--a novel thioredoxin inhibitor--as well as broad spectrum dithiol ligands diamide and phenylarsine oxide are able to induce and execute a regular apoptotic sequence of events without overwhelming the cell's ability to detoxify reactive oxygen species. All three agents were found to target the thioredoxin system in a cell-free assay.
View Article and Find Full Text PDFSTAT5 phosphorylation has been noted in 69-95% of AML cases by Western blotting. We used flow cytometry to measure phosphorylated STAT5 on a semi-quantitative scale. The method was validated on K562 cells, which constitutively express phosphorylated STAT5, but lose this when BCR-abl tyrosine kinase activity is blocked by STI571.
View Article and Find Full Text PDF