Publications by authors named "Monica P Hui"

A key pathway for mRNA degradation in bacterial cells begins with conversion of the initial 5'-terminal triphosphate to a monophosphate, a modification that renders transcripts more vulnerable to attack by ribonucleases whose affinity for monophosphorylated 5' ends potentiates their catalytic efficacy. In Escherichia coli, the only proteins known to be important for controlling degradation via this pathway are the RNA pyrophosphohydrolase RppH, its heteromeric partner DapF, and the 5'-monophosphate-assisted endonucleases RNase E and RNase G. We have now identified the metabolic enzyme cytidylate kinase as another protein that affects rates of 5'-end-dependent mRNA degradation in E.

View Article and Find Full Text PDF

mRNA degradation is an important mechanism for controlling gene expression in bacterial cells. This process involves the orderly action of a battery of cellular endonucleases and exonucleases, some universal and others present only in certain species. These ribonucleases function with the assistance of ancillary enzymes that covalently modify the 5' or 3' end of RNA or unwind base-paired regions.

View Article and Find Full Text PDF

Many Escherichia coli mRNAs are degraded by a 5'-end-dependent mechanism in which RppH-catalyzed conversion of the 5'-terminal triphosphate to a monophosphate triggers rapid endonucleolytic cleavage by RNase E. However, little is understood about what governs the decay rates of these transcripts. We investigated the decay of three such messages--rpsT P1, yfcZ, and ydfG--to characterize the rate-determining step in their degradation.

View Article and Find Full Text PDF

Most bacterial chromosomes contain homologs of plasmid partitioning (par) loci. These loci encode ATPases called ParA that are thought to contribute to the mechanical force required for chromosome and plasmid segregation. In Vibrio cholerae, the chromosome II (chrII) par locus is essential for chrII segregation.

View Article and Find Full Text PDF

Vibrio cholerae, the cause of cholera, has two circular chromosomes. The parAB genes on each V. cholerae chromosome act to control chromosome segregation in a replicon-specific fashion.

View Article and Find Full Text PDF