We assessed patient- and physician-reported prevalence of gastrointestinal symptoms and their impact on quality of life (QOL) in Italian renal transplant recipients with stable graft function. Patients ≥18years with a renal allograft functioning for ≥6months and stable serum creatinine levels of <2.5mg/dl were enrolled.
View Article and Find Full Text PDFObjective: Mesenchymal stem cells (MSCs) are multipotent cells that can self-renew, proliferate, and exhibit elevated cellular plasticity. To investigate their possible neural fate, we studied human mesenchymal stem cells (hMSCs) in different cell culture conditions from morphological, immunochemical, gene expression, and physiological points of view.
Materials And Methods: We tested hMSCs in three previously reported experimental conditions made of alpha-modified minimum essential medium (alpha-MEM)/1 mM beta-mercaptoethanol (betaME), 10 microM alpha-MEM/retinoic acid (RA) or alpha-MEM/2% dimethylsulfoxide (DMSO) + 200 microM beta-hydroxyanisole (BHA), respectively, and in a new experimental condition with neural progenitor maintenance medium (NPMM).
A new series of calcium channel agonists structurally related to Bay K8644, containing NO donor furoxans and the related furazans unable to release NO, is described. The racemic mixtures were studied for their action on L-type Ca(2+) channels expressed in cultured rat insulinoma RINm5F cells. All the products proved to be potent calcium channel agonists.
View Article and Find Full Text PDFUnderstanding precisely the functioning of voltage-gated Ca2+ channels and their modulation by signaling molecules will help clarifying the Ca(2+)-dependent mechanisms controlling exocytosis in chromaffin cells. In recent years, we have learned more about the various pathways through which Ca2+ channels can be up- or down-modulated by hormones and neurotransmitters and how these changes may condition chromaffin cell activity and catecolamine release. Recently, the attention has been focused on the modulation of L-channels (CaV 1), which represent the major Ca2+ current component in rat and human chromaffin cells.
View Article and Find Full Text PDF