Publications by authors named "Monica Nicolau"

MYOD is an E-box sequence-specific basic Helix-Loop-Helix (bHLH) transcriptional activator that, when expressed in non-muscle cells, induces nuclear reprogramming toward skeletal myogenesis by promoting chromatin accessibility at previously silent loci. Here, we report on the identification of a previously unrecognized property of MYOD as repressor of gene expression, via E-box-independent chromatin binding within accessible genomic elements, which invariably leads to reduced chromatin accessibility. MYOD-mediated repression requires the integrity of functional domains previously implicated in MYOD-mediated activation of gene expression.

View Article and Find Full Text PDF

Mammalian cells sense and react to the mechanics of their immediate microenvironment. Therefore, the characterization of the biomechanical properties of tissues with high spatial resolution provides valuable insights into a broad variety of developmental, homeostatic and pathological processes within living organisms. The biomechanical properties of the basement membrane (BM), an extracellular matrix (ECM) substructure measuring only ∼100-400 nm across, are, among other things, pivotal to tumor progression and metastasis formation.

View Article and Find Full Text PDF

The basement membrane (BM) is a special type of extracellular matrix and presents the major barrier cancer cells have to overcome multiple times to form metastases. Here we show that BM stiffness is a major determinant of metastases formation in several tissues and identify netrin-4 (Net4) as a key regulator of BM stiffness. Mechanistically, our biophysical and functional analyses in combination with mathematical simulations show that Net4 softens the mechanical properties of native BMs by opening laminin node complexes, decreasing cancer cell potential to transmigrate this barrier despite creating bigger pores.

View Article and Find Full Text PDF

A Retraction to this paper has been published and can be accessed via a link at the top of the paper.

View Article and Find Full Text PDF

Every year more than 8 million people suffer from cancer-related deaths worldwide [1]. Metastasis, the spread of cancer to distant sites, accounts for 90% of these deaths. A promising target for blocking tumor progression, without causing severe side effects [2], is Tumor Endothelial Marker 8 (TEM8), an integrin-like cell surface protein expressed predominantly in the tumor endothelium and in cancer cells [3, 4].

View Article and Find Full Text PDF

The immune system enacts a coordinated response when faced with complex environmental and pathogenic perturbations. We used the heterogeneous responses of mice to persistent Salmonella infection to model system-wide coordination of the immune response to bacterial burden. We hypothesized that the variability in outcomes of bacterial growth and immune response across genetically identical mice could be used to identify immune elements that serve as integrators enabling co-regulation and interconnectedness of the innate and adaptive immune systems.

View Article and Find Full Text PDF

Head and neck squamous cell carcinoma (HNSCC) is a disease with heterogeneous clinical behavior and response to therapies. Despite the introduction of multimodality treatment, 40-50% of patients with advanced disease recur. Therefore, there is an urgent need to improve the classification beyond the current parameters in clinical use to better stratify patients and the therapeutic approaches.

View Article and Find Full Text PDF

Delayed recovery from surgery causes personal suffering and substantial societal and economic costs. Whether immune mechanisms determine recovery after surgical trauma remains ill-defined. Single-cell mass cytometry was applied to serial whole-blood samples from 32 patients undergoing hip replacement to comprehensively characterize the phenotypic and functional immune response to surgical trauma.

View Article and Find Full Text PDF
Article Synopsis
  • Fragile X syndrome (FXS), caused by mutations in the FMR1 gene, is the leading inherited cause of developmental disabilities and is linked to autism.
  • A study analyzed brain imaging and behavior of 52 young boys with FXS, revealing two distinct subgroups with significant differences in brain structure, IQ, and autism-related behaviors.
  • The findings indicate that FXS can manifest in two separate biological and clinical phenotypes, highlighting the effectiveness of topological data analysis (TDA) in exploring neuropsychiatric disorders.
View Article and Find Full Text PDF

The induction of hypoxia-inducible factors (HIFs) is essential for the adaptation of tumor cells to a low-oxygen environment. We found that the expression of the apoptosis inhibitor ARC (apoptosis repressor with a CARD domain) was induced by hypoxia in a variety of cancer cell types, and its induction is primarily HIF1 dependent. Chromatin immunoprecipitation (ChIP) and reporter assays also indicate that the ARC gene is regulated by direct binding of HIF1 to a hypoxia response element (HRE) located at bp -190 upstream of the transcription start site.

View Article and Find Full Text PDF

Introduction: Lysyl oxidase-like 2 (LOXL2) is a matrix-remodeling enzyme that has been shown to play a key role in invasion and metastasis of breast carcinoma cells. However, very little is known about its role in normal tissue homeostasis. Here, we investigated the effects of LOXL2 expression in normal mammary epithelial cells to gain insight into how LOXL2 mediates cancer progression.

View Article and Find Full Text PDF

Mammalian Bre1 complexes (BRE1A/B (RNF20/40) in humans and Bre1a/b (Rnf20/40) in mice) function similarly to their yeast homolog Bre1 as ubiquitin ligases in monoubiquitination of histone H2B. This ubiquitination facilitates methylation of histone H3 at K4 and K79, and accounts for the roles of Bre1 and its homologs in transcriptional regulation. Recent studies by others suggested that Bre1 acts as a tumor suppressor, augmenting expression of select tumor suppressor genes and suppressing select oncogenes.

View Article and Find Full Text PDF

High-throughput biological data, whether generated as sequencing, transcriptional microarrays, proteomic, or other means, continues to require analytic methods that address its high dimensional aspects. Because the computational part of data analysis ultimately identifies shape characteristics in the organization of data sets, the mathematics of shape recognition in high dimensions continues to be a crucial part of data analysis. This article introduces a method that extracts information from high-throughput microarray data and, by using topology, provides greater depth of information than current analytic techniques.

View Article and Find Full Text PDF

More than 90% of cancer patient mortality is attributed to metastasis. In this study, we investigated a role for the lysyl oxidase-related enzyme lysyl oxidase-like 2 (LOXL2) in breast cancer metastasis, in both patient samples and in vivo models. Analysis of a published microarray data set revealed that LOXL2 expression is correlated with metastasis and decreased survival in patients with aggressive breast cancer.

View Article and Find Full Text PDF

We aimed to investigate the molecular characteristics of Korean breast cancer. A cDNA microarray study (>42k clones) was performed on 69 breast cancers and three normal breast tissues. The subjects had a high percentage of HER-2 expression, hormone receptor negativity, and young onset.

View Article and Find Full Text PDF

Triple-negative breast cancer (TNBC) is defined by a lack of expression of estrogen, progesterone, and HER2 receptors, and genetically most of them fall into the basal subgroup of breast cancer. The important issue of TNBC is poorer clinical outcome and absence of effective targeted therapy. In this study, we sought to identify DNA copy number alterations and expression of relevant genes characteristic of TNBC to discover potential therapeutic targets.

View Article and Find Full Text PDF

Motivation: Genomic high-throughput technology generates massive data, providing opportunities to understand countless facets of the functioning genome. It also raises profound issues in identifying data relevant to the biology being studied.

Results: We introduce a method for the analysis of pathologic biology that unravels the disease characteristics of high dimensional data.

View Article and Find Full Text PDF

Background: Previous studies demonstrated breast cancer tumor tissue samples could be classified into different subtypes based upon DNA microarray profiles. The most recent study presented evidence for the existence of five different subtypes: normal breast-like, basal, luminal A, luminal B, and ERBB2+.

Results: Based upon the analysis of 599 microarrays (five separate cDNA microarray datasets) using a novel approach, we present evidence in support of the most consistently identifiable subtypes of breast cancer tumor tissue microarrays being: ESR1+/ERBB2-, ESR1-/ERBB2-, and ERBB2+ (collectively called the ESR1/ERBB2 subtypes).

View Article and Find Full Text PDF

Metastasis is a multistep process responsible for most cancer deaths, and it can be influenced by both the immediate microenvironment (cell-cell or cell-matrix interactions) and the extended tumour microenvironment (for example vascularization). Hypoxia (low oxygen) is clinically associated with metastasis and poor patient outcome, although the underlying processes remain unclear. Microarray studies have shown the expression of lysyl oxidase (LOX) to be elevated in hypoxic human tumour cells.

View Article and Find Full Text PDF

Achieving information content of satisfactory breadth and depth remains a formidable challenge for proteomics. This problem is particularly relevant to the study of primary human specimens, such as tumor biopsies, which are heterogeneous and of finite quantity. Here we present a functional proteomics strategy that unites the activity-based protein profiling and multidimensional protein identification technologies (ABPP-MudPIT) for the streamlined analysis of human samples.

View Article and Find Full Text PDF

The synthesis of nonmetalated triazolephtahlocyanines is described for the first time. These compounds have been prepared by both one-step and stepwise procedures. Their spectroscopic data reveal a nonaromatic cross-conjugated 18pi-electron structure in contrast to their aromatic metalated derivatives.

View Article and Find Full Text PDF