Publications by authors named "Monica M Wilhelmus"

Copepods are negatively buoyant organisms actively participating in large-scale vertical migrations as primary consumers in marine ecosystems. As such, these organisms need to overcome their own weight to swim upwards, incurring extra energy costs that are not offset by any mechanism intrinsic to drag-based propulsion. While copepod vertical migrations are well documented, it is still unclear how they achieve extensive upward cruising despite this limitation.

View Article and Find Full Text PDF

Metachronal propulsion is widespread in aquatic swarming organisms to achieve performance and maneuverability at intermediate Reynolds numbers. Studying only live organisms limits our understanding of the mechanisms driving these abilities. Thus, we present the design, manufacture, and validation of the Pleobot-a unique krill-inspired robotic swimming appendage constituting the first platform to study metachronal propulsion comprehensively.

View Article and Find Full Text PDF

Under-ice eddies are prevalent in the major circulation system in the western Arctic Ocean, the Beaufort Gyre. Theoretical studies hypothesize that the eddy-driven overturning and the ice-ocean drag are crucial mechanisms of the gyre equilibration in response to atmospheric winds. However, due to severe weather conditions and limitations of remote sensing instruments, there are only sparse eddy observations in the ice-covered Arctic Ocean.

View Article and Find Full Text PDF

Jackson Pollock's most celebrated abstract paintings were produced with the so-called dripping technique. By pouring liquid paint with the help of a stick or from a can, Pollock deposited viscous fluid filaments on a horizontal canvas, rhythmically moving around it. The intricate webs of lines, ubiquitous in his compositions, have fascinated art historians and scientists.

View Article and Find Full Text PDF

Particle image velocimetry (PIV) is used in a wide variety of fields, due to the opportunity it provides for precisely visualizing and quantifying flows across a large spatiotemporal range. However, its implementation typically requires the use of expensive and specialized instrumentation, which limits its broader utility. Moreover, within the field of bioengineering, in vitro flow visualization studies are also often further limited by the high cost of commercially sourced tissue phantoms that recapitulate desired anatomical structures, particularly for those that span the mesoscale regime (i.

View Article and Find Full Text PDF