Motor neuron loss is characteristic of many neurodegenerative disorders and results in rapid loss of muscle control, paralysis, and eventual death in severe cases. In order to investigate the neurotrophic effects of a motor neuron lineage graft, we transplanted human embryonic stem cell-derived motor neuron progenitors (hMNPs) and examined their histopathological effect in three animal models of motor neuron loss. Specifically, we transplanted hMNPs into rodent models of SMA (Δ7SMN), ALS (SOD1 G93A), and spinal cord injury (SCI).
View Article and Find Full Text PDFThe availability of human neuronal progenitors (hNPs) in high purity would greatly facilitate neuronal drug discovery and developmental studies, as well as cell replacement strategies for neurodegenerative diseases and conditions, such as spinal cord injury, stroke, Parkinson's disease, Alzheimer's disease, and Huntington's disease. Here we describe for the first time a method for producing hNPs in large quantity and high purity from human embryonic stem cells (hESCs) in feeder-free conditions, without the use of exogenous noggin, sonic hedgehog or analogs, rendering the process clinically compliant. The resulting population displays characteristic neuronal-specific markers.
View Article and Find Full Text PDFMitochondria undergo dramatic rearrangement during Drosophila spermatogenesis. In wild type testes, the many small mitochondria present in pre-meiotic spermatocytes later aggregate, fuse, and interwrap in post-meiotic haploid spermatids to form the spherical Nebenkern, whose two giant mitochondrial compartments later unfurl and elongate beside the growing flagellar axoneme. Drp1 encodes a dynamin-related protein whose homologs in many organisms mediate mitochondrial fission and whose Drosophila homolog is known to govern mitochondrial morphology in neurons.
View Article and Find Full Text PDFMost spinal cord injuries (SCI) occur in young adults. In the past few decades however, the average age at time of SCI and the percentage of injuries in persons over the age of 60 have increased. Studies have shown that there is an age-associated delay in the rate of remyelination following toxin-induced demyelination of the spinal cord, suggesting that there may be an age-associated difference in regenerative efficiency.
View Article and Find Full Text PDFOver the past few decades, the average age at time of spinal cord injury (SCI) has increased. Here we examined locomotor recovery and myelin pathology in both young and aged adult rats following contusion SCI. Our assessment indicates that the rate of locomotor recovery following SCI is significantly delayed in aged rats as compared to young rats, and is associated with a greater degree of pathology and demyelination.
View Article and Find Full Text PDFDemyelination is a prominent feature of spinal cord injury (SCI) and is followed by incomplete remyelination, which may contribute to physiological impairment. Demyelination has been documented in several species including humans, but the extent of demyelination and its functional consequence remain unknown. In this report, we document and compare the extent of tissue pathology, white matter apoptosis, demyelination, and remyelination 2 months following injury in rat contusion and transection models of SCI.
View Article and Find Full Text PDFDemyelination contributes to loss of function following spinal cord injury. We have shown previously that transplantation of human embryonic stem cell-derived oligodendrocyte progenitors into adult rat 200 kD contusive spinal cord injury sites enhances remyelination and promotes recovery of motor function. Previous studies using oligodendrocyte lineage cells have noted a correlation between the presence of demyelinating pathology and the survival and migration rate of the transplanted cells.
View Article and Find Full Text PDF