Publications by authors named "Monica M Arienzo"

Plastics in aquatic ecosystems rapidly undergo biofouling, giving rise to a new ecosystem on their surface, the 'plastisphere.' Few studies quantify the impact of plastics and their associated community on ecosystem traits from biodiversity and functional traits to metabolic function. It has been suspected that impacts on ecosystems may depend on its state but comparative studies of ecosystem responses are rare in the published literature.

View Article and Find Full Text PDF

Lithium (Li) concentrations in drinking-water supplies are not regulated in the United States; however, Li is included in the 2022 U.S. Environmental Protection Agency list of unregulated contaminants for monitoring by public water systems.

View Article and Find Full Text PDF

Monitoring plastic litter in the environment is critical to understanding the amount, sources, transport, fate, and environmental impact of this pollutant. However, few studies have monitored plastic litter on lakebeds which are potentially important environments for determining the fate and transport of plastic litter in freshwater basins. In this study, a self-contained underwater breathing apparatus was used for litter collection at the lakebed along five transects in Lake Tahoe, United States.

View Article and Find Full Text PDF
Article Synopsis
  • * A logistic regression model was created to predict elevated arsenic levels in alluvial aquifers, which are the primary water source for domestic well users in the region, revealing that tectonic and geothermal conditions significantly impact arsenic contamination risk.
  • * The model demonstrated an overall accuracy of 81% and indicated that over 64% of alluvial-aquifer domestic well users—about 49,000 individuals—face more than a 50% chance of having elevated arsenic levels in their untreated well water
View Article and Find Full Text PDF

The dominant source of drinking water in rural Nevada, United States, is privately-owned domestic wells. Because the water from these wells is unregulated with respect to government guidelines, it is the owner's responsibility to test their groundwater for heavy metals and other contaminants. Arsenic, lead, cadmium, and uranium have been previously measured at concentrations above Environmental Protection Agency (EPA) guidelines in Nevada groundwater.

View Article and Find Full Text PDF

Fire plays a pivotal role in shaping terrestrial ecosystems and the chemical composition of the atmosphere and thus influences Earth's climate. The trend and magnitude of fire activity over the past few centuries are controversial, which hinders understanding of preindustrial to present-day aerosol radiative forcing. Here, we present evidence from records of 14 Antarctic ice cores and 1 central Andean ice core, suggesting that historical fire activity in the Southern Hemisphere (SH) exceeded present-day levels.

View Article and Find Full Text PDF

Tree-ring records are a potential archive for reconstructing long-term historical trends in atmospheric mercury (Hg) concentrations. Although Hg preserved in tree rings has been shown to be derived largely from the atmosphere, quantitative relationships linking atmospheric concentrations to those in tree rings are limited. In addition, few tree-ring-based Hg records have been evaluated against co-located proxies of atmospheric Hg deposition or direct atmospheric measurements.

View Article and Find Full Text PDF

Lead pollution in Arctic ice reflects large-scale historical changes in midlatitude industrial activities such as ancient lead/silver production and recent fossil fuel burning. Here we used measurements in a broad array of 13 accurately dated ice cores from Greenland and Severnaya Zemlya to document spatial and temporal changes in Arctic lead pollution from 200 BCE to 2010 CE, with interpretation focused on 500 to 2010 CE. Atmospheric transport modeling indicates that Arctic lead pollution was primarily from European emissions before the 19th-century Industrial Revolution.

View Article and Find Full Text PDF

Measurement of elemental concentrations in ice cores are critical for determining atmospheric aerosol variations. For such measurements, acidified ice-core meltwater typically is analyzed continuously (<5 min after acidification) or discretely (∼3 months after acidification). The reduced acidification time during continuous analysis may result in a measured elemental concentration that is lower than the concentration of discrete analysis if particulates are not fully dissolved.

View Article and Find Full Text PDF

Forest fires are increasing across the American West due to climate warming and fire suppression. Accelerated snow melt occurs in burned forests due to increased light transmission through the canopy and decreased snow albedo from deposition of light-absorbing impurities. Using satellite observations, we document up to an annual 9% growth in western forests burned since 1984, and 5 day earlier snow disappearance persisting for >10 years following fire.

View Article and Find Full Text PDF

Lead pollution in Arctic ice reflects midlatitude emissions from ancient lead-silver mining and smelting. The few reported measurements have been extrapolated to infer the performance of ancient economies, including comparisons of economic productivity and growth during the Roman Republican and Imperial periods. These studies were based on sparse sampling and inaccurate dating, limiting understanding of trends and specific linkages.

View Article and Find Full Text PDF

Glacial-state greenhouse gas concentrations and Southern Hemisphere climate conditions persisted until ∼17.7 ka, when a nearly synchronous acceleration in deglaciation was recorded in paleoclimate proxies in large parts of the Southern Hemisphere, with many changes ascribed to a sudden poleward shift in the Southern Hemisphere westerlies and subsequent climate impacts. We used high-resolution chemical measurements in the West Antarctic Ice Sheet Divide, Byrd, and other ice cores to document a unique, ∼192-y series of halogen-rich volcanic eruptions exactly at the start of accelerated deglaciation, with tephra identifying the nearby Mount Takahe volcano as the source.

View Article and Find Full Text PDF

Rationale: The hydrogen and oxygen isotopic analyses (δ(2)H and δ(18)O values) of water trapped within speleothem carbonate (fluid inclusions) have traditionally been conducted utilizing dual-inlet isotope ratio mass spectrometry (IRMS) or continuous-flow (CF)-IRMS methods. The application of cavity ring-down spectroscopy (CRDS) to the δ(2)H and δ(18)O analysis of water in fluid inclusions has been investigated at the University of Miami as an alternative method to CF-IRMS.

Methods: An extraction line was developed to recover water from the fluid inclusions consisting of a crusher, sample injection port and an expansion volume (either 100 or 50 cm(3)) directly connected to the CRDS instrument.

View Article and Find Full Text PDF