The commercial development of perovskite solar cells (PSCs) has been significantly delayed by the constraint of performing time-consuming degradation studies under real outdoor conditions. These are necessary steps to determine the device lifetime, an area where PSCs traditionally suffer. In this work, we demonstrate that the outdoor degradation behavior of PSCs can be predicted by employing accelerated indoor stability analyses.
View Article and Find Full Text PDFExpression of concern for 'Concordantly fabricated heterojunction ZnO-TiO nanocomposite electrodes a co-precipitation method for efficient stable quasi-solid-state dye-sensitized solar cells' by Ahmed Esmail Shalan , , 2015, , 103095-103104, DOI: 10.1039/C5RA21822E.
View Article and Find Full Text PDFThe effect of Cs-incorporated NiO on perovskite solar cells with an inverted structure was investigated, where NiO and PCBM were used as selective contacts for holes and electrons, respectively. It was found that the generation of an Ni phase in an NiO layer was significantly suppressed by employing cesium. Furthermore, Cs-incorporated NiO enabled holes to be efficiently separated at the interface, showing the improved photoluminescent quenching and thus generating higher short-circuit current.
View Article and Find Full Text PDFThe first antiferroelectric solar cell is presented. This study shows that antiferroelectric thin-film photovoltaic current can be switched on when biased into the polar phase to generate abovebandgap photovoltages in excess of 100 V and photovoltaic fields of several megavolts per centimeter, the largest ever measured for any material.
View Article and Find Full Text PDFWe report on the degradation of organic photovoltaic (OPV) cells in both indoor and outdoor environments. Eight different research groups contributed state of the art OPV cells to be studied at Pomona College. Power conversion efficiency and fill factor were determined from IV curves collected at regular intervals over six to eight months.
View Article and Find Full Text PDFColloidal TiO2 anatase nanoparticles of 4-8 nm diameter capped with 3,6,9-trioxadecanoic acid (TODA) were synthesized at low temperature using water and ethanol as the solvents. ATR-FTIR and (1)H NMR characterization showed the capping acid capability of stabilizing the TiO2 nanoparticles through labile hydrogen bonds. The presence of the capping ligand permitted the further preparation of homogeneous and stable colloidal dispersions of the TiO2 powder in aqueous media.
View Article and Find Full Text PDFThe present work is the fourth (and final) contribution to an inter-laboratory collaboration that was planned at the 3rd International Summit on Organic Photovoltaic Stability (ISOS-3). The collaboration involved six laboratories capable of producing seven distinct sets of OPV devices that were degraded under well-defined conditions in accordance with the ISOS-3 protocols. The degradation experiments lasted up to 1830 hours and involved more than 300 cells on more than 100 devices.
View Article and Find Full Text PDFThis work is part of the inter-laboratory collaboration to study the stability of seven distinct sets of state-of-the-art organic photovoltaic (OPV) devices prepared by leading research laboratories. All devices have been shipped to and degraded at RISØ-DTU up to 1830 hours in accordance with established ISOS-3 protocols under defined illumination conditions. In this work, we apply the Incident Photon-to-Electron Conversion Efficiency (IPCE) and the in situ IPCE techniques to determine the relation between solar cell performance and solar cell stability.
View Article and Find Full Text PDFWe show how nanoimprint lithographic techniques are particularly suited for the realization of OLED device structures. We tested them to realize nanopatterned metallic electrodes containing photonic crystals to couple the light out and plasmonic crystals showing extraordinary transmission. At similar current densities, a two-fold electroluminescence is achieved with devices having double-sided structured metallic electrodes as compared to a control OLED with an ITO anode.
View Article and Find Full Text PDFWe have synthesized a series of four new promising D-π-A conjugated organic sensitizers with a proaromatic 4H-pyran-4-ylidene as a donor, a thiophene ring in the bridge, and 2-cyanoacrilic acid as acceptor. Comparison between different donor substituents and the modification of the thiophene ring resulted in molar extinction coefficients as high as 36399 M(-1) cm(-1) at 551 nm. The photovoltaic properties of the DSSCs demonstrate power conversion efficiencies as high as 5.
View Article and Find Full Text PDFThe effect of the neutral surfactant dodecylamine and octadecylamine on the synthesis of TiO2-based nanostructures by the treatment of anatase with NaOH under hydrothermal conditions in the temperature range 120-150 degrees C and different reaction times was investigated. The products analyzed by electron microscopy, X-ray diffraction, FT-IR and elemental analysis contains--depending of the amine, the temperature and the duration of the hydrothermal treatment--spherical and tubular species containing the acid H2Ti3O7. The formation of morphologically almost pure phases constituted by nanospheres and nanotubes were obtained at 130 degrees C after about 30 and 50 h respectively.
View Article and Find Full Text PDFPoly(3,4-ethylenedioxythiophene) (PEDOT) is an excellent hole-conducting polymer able to replace the liquid I(-)/I3(-) redox electrolyte in dye-sensitized solar cells (DSCs). In this work we applied the in situ photoelectropolymerization technique to synthesize PEDOT and carried out a careful analysis of the effect of different doping anions on overall solar cell performance. The anions analyzed in this work are ClO4(-), CF3SO3(-), BF4(-), and TFSI(-).
View Article and Find Full Text PDFElectrochemical polymerization of N-vinyl carbazole (VC) on carbon nanotube (CNT) films was studied by cyclic voltammetry (CV) in LiClO4/acetonitrile solutions. Comparing the cyclic voltammograms recorded on a blank Pt electrode with those obtained when single- or multi-walled carbon nanotube (SWNT or MWNT) films were previously deposited onto the Pt electrode, a downshift of the VC reduction peak potential is observed in the latter case. The influences of monomer concentration, type of solvent, and supporting electrolyte on the polymerization conditions and electrochemical properties of these composite materials are also investigated.
View Article and Find Full Text PDF