Publications by authors named "Monica L DeLay"

The DEK gene encodes a nuclear protein that binds chromatin and is involved in various fundamental nuclear processes including transcription, RNA splicing, DNA replication and DNA repair. Several cancer types characteristically over-express DEK at the earliest stages of transformation. In order to explore relevant mechanisms whereby DEK supports oncogenicity, we utilized cancer databases to identify gene transcripts whose expression patterns are tightly correlated with that of DEK.

View Article and Find Full Text PDF

Almost four decades of research into the role of human leukocyte antigen-B27 (HLA-B27) in susceptibility to spondyloarthritis has yet to yield a convincing answer. New results from an HLA-B27 transgenic rat model now demonstrate quite convincingly that CD8(+) T cells are not required for the inflammatory phenotype. Discoveries that the HLA-B27 heavy chain has a tendency to misfold during the assembly of class I complexes in the endoplasmic reticulum (ER) and to form aberrant disulfide-linked dimers after transport to the cell surface have forced the generation of new ideas about its role in disease pathogenesis.

View Article and Find Full Text PDF

HLA-B27 plays a central role in the pathogenesis of many spondyloarthropathies and in particular ankylosing spondylitis. The observation that the HLA-B27 heavy chain has a tendency to misfold has raised the possibility that associated diseases may belong in a rapidly expanding category of protein misfolding disorders. The synthesis of the HLA-B27 heavy chain, assembly with beta2m and the loading of peptide cargo, occurs in the endoplasmic reticulum (ER) before transport to the cell surface.

View Article and Find Full Text PDF

Objective: To determine whether HLA-B27 misfolding and the unfolded protein response (UPR) result in cytokine dysregulation and whether this is associated with Th1 and/or Th17 activation in HLA-B27/human beta(2)-microglobulin (Hubeta(2)m)-transgenic rats, an animal model of spondylarthritis.

Methods: Cytokine expression in lipopolysaccharide (LPS)-stimulated macrophages was analyzed in the presence and absence of a UPR induced by chemical agents or by HLA-B27 up-regulation. Cytokine expression in colon tissue and in cells purified from the lamina propria was determined by real-time reverse transcription-polymerase chain reaction analysis, and differences in Th1 and Th17 CD4+ T cell populations were quantified after intracellular cytokine staining.

View Article and Find Full Text PDF

HLA-B27 plays a central role in the pathogenesis of many spondyloarthropathies and in particular ankylosing spondylitis. The observation that the HLA-B27 heavy chain has a tendency to misfold has raised the possibility that associated diseases may belong in a rapidly expanding category of protein misfolding disorders. The synthesis of the HLA-B27 heavy chain, assembly with beta(2)m and the loading of peptide cargo, occurs in the endoplasmic reticulum (ER) before transport to the cell surface.

View Article and Find Full Text PDF

Objective: To determine whether macrophages, a type of cell implicated in the pathogenesis of ankylosing spondylitis (AS), exhibit a characteristic gene expression pattern.

Methods: Macrophages were derived from the peripheral blood of 8 AS patients (median disease duration 13 years [range <1-43 years]) and 9 healthy control subjects over 7 days with the use of granulocyte-macrophage colony-stimulating factor. Cells were stimulated for 24 hours with interferon-gamma (IFN gamma; 100 units/ml), were left untreated for 24 hours, or were treated for 3 hours with lipopolysaccharide (LPS; 10 ng/ml).

View Article and Find Full Text PDF

Type I IFN are strongly induced upon engagement of certain pattern recognition receptors by microbial products, and play key roles in regulating innate and adaptive immunity. It has become apparent that the endoplasmic reticulum (ER) stress-induced unfolded protein response (UPR), in addition to restoring ER homeostasis, also influences the expression of certain inflammatory cytokines. However, the extent to which UPR signaling regulates type I IFN remains unclear.

View Article and Find Full Text PDF

Objective: HLA-B27 is implicated in the pathogenesis of spondylarthritis (SpA), yet the molecular mechanisms are incompletely defined. HLA-B27 misfolding has been associated with endoplasmic reticulum stress and activation of the unfolded protein response (UPR) in macrophages from HLA-B27/human beta(2)-microglobulin-transgenic (B27-transgenic) rats. This study was performed to assess the mechanisms that drive activation of the HLA-B27-induced UPR and to determine whether splenocytes respond in a similar manner.

View Article and Find Full Text PDF

The mechanism by which the MHC class I allele, HLA-B27, contributes to spondyloarthritis pathogenesis is unknown. In contrast to other alleles that have been examined, HLA-B27 has a tendency to form high m.w.

View Article and Find Full Text PDF

Objective: To reveal the cause of the impaired elimination of Salmonella enteritidis in HLA-B27-transfected human monocytic cells and to study whether the B pocket of HLA-B27 contributes to these modulatory effects.

Methods: Stable U937 cell transfectants expressing HLA-A2, B27, or different forms of B27 with amino acid substitutions in the B pocket were prepared. Mock-transfected cells were prepared using the antibiotic resistance vector (pSV2neo) alone.

View Article and Find Full Text PDF

The class I protein HLA-B27 confers susceptibility to inflammatory arthritis in humans and when overexpressed in rodents for reasons that remain unclear. We demonstrated previously that HLA-B27 heavy chains (HC) undergo endoplasmic reticulum (ER)-associated degradation. We report here that HLA-B27 HC also forms two types of aberrant disulfide-linked complexes (dimers) during the folding and assembly process that can be distinguished by conformation-sensitive antibodies W6/32 and HC10.

View Article and Find Full Text PDF

T cells play a central role in many autoimmune diseases. A method to specifically target the function of autoreactive T cell clones would avoid the global immunosuppression associated with current therapies. To develop a molecule capable of inhibiting autoreactive T cell responses in vivo, single-chain peptide-I-A-IgG3 fusion proteins were constructed and expressed in both mammalian and insect cells.

View Article and Find Full Text PDF