Publications by authors named "Monica Kurte"

Among the mechanisms of suppression that T regulatory (Treg) cells exert to control the immune responses, the secretion of small extracellular vesicles (sEV) has been recently proposed as a novel contact-independent immunomodulatory mechanism. Previous studies have demonstrated that Treg cells produce sEV, including exosomes, able to modulate the effector function of CD4+ T cells, and antigen presenting cells (APCs) such as dendritic cells (DCs) through the transfer of microRNA, cytokines, the production of adenosine, among others. Previously, we have demonstrated that Neuropilin-1 (Nrp1) is required for Tregs-mediated immunosuppression mainly by impacting on the phenotype and function of effector CD4+ T cells.

View Article and Find Full Text PDF

The microbiome corresponds to the genetic component of microorganisms (archaea, bacteria, phages, viruses, fungi, and protozoa) that coexist with an individual. During the last two decades, research on this topic has become massive demonstrating that in both homeostasis and disease, the microbiome plays an important role, and in some cases, a decisive one. To date, microbiota have been identified at different body locations, such as the eyes, lung, gastrointestinal and genitourinary tracts, and skin, and technological advances have permitted the taxonomic characterization of resident species and their metabolites, in addition to the cellular and molecular components of the host that maintain a crosstalk with local microorganisms.

View Article and Find Full Text PDF

Background: Mesenchymal stem cells (MSCs) have been recognized for their regenerative and anti-inflammatory capacity which makes them very attractive to cell therapy, especially those ones to treat inflammatory and autoimmune disease. Two different immune-phenotypes have been described for MSCs depending on which Toll-like receptor (TLR) is activated. MSC1 is endowed with a pro-inflammatory phenotype following TLR4 activation with LPS.

View Article and Find Full Text PDF

Mesenchymal stem cells (MSCs) have fueled ample translation for the treatment of immune-mediated diseases. They exert immunoregulatory and tissue-restoring effects. MSC-mediated transfer of mitochondria (MitoT) has been demonstrated to rescue target organs from tissue damage, yet the mechanism remains to be fully resolved.

View Article and Find Full Text PDF

The therapeutic effect of mesenchymal stem cells (MSCs) in multiple sclerosis (MS) and the experimental autoimmune encephalomyelitis (EAE) model has been well described. This effect is, in part, mediated through the inhibition of IL17-producing cells and the generation of regulatory T cells. While proinflammatory cytokines such as IFNγ, TNFα, and IL1β have been shown to enhance MSCs immunosuppressive function, the role of IL17 remains poorly elucidated.

View Article and Find Full Text PDF

Background: Recently, it has been observed that mesenchymal stem cells (MSCs) can modulate their immunoregulatory properties depending on the specific in-vitro activation of different Toll-like receptors (TLR), such as TLR3 and TLR4. In the present study, we evaluated the effect of polyinosinic:polycytidylic acid (poly(I:C)) and lipopolysaccharide (LPS) pretreatment on the immunological capacity of MSCs in vitro and in vivo.

Methods: C57BL/6 bone marrow-derived MSCs were pretreated with poly(I:C) and LPS for 1 hour and their immunomodulatory capacity was evaluated.

View Article and Find Full Text PDF

The neurotransmitter GABA has been recently identified as a potent immunosuppressive agent that targets both innate and adaptive immune systems and prevents disease progression of several autoimmunity models. Mesenchymal stem cells (MSCs) are self-renewing progenitor cells that differentiate into various cell types under specific conditions, including neurons. In addition, MSC possess strong immunosuppressive capabilities.

View Article and Find Full Text PDF

Background Aims: Immunomodulatory properties of human umbilical cord-derived mesenchymal stromal cells (UCMSCs) can be differentially modulated by toll-like receptors (TLR) agonists. Here, the therapeutic efficacy of short TLR3 and TLR4 pre-conditioning of UCMSCs was evaluated in a dextran sulfate sodium (DSS)-induced colitis in mice. The novelty of this study is that although modulation of human MSCs activity by TLRs is not a new concept, this is the first time that short TLR pre-conditioning has been carried out in a murine inflammatory model of acute colitis.

View Article and Find Full Text PDF

Potent immunosuppressive and regenerative properties of mesenchymal stem cells (MSCs) position them as a novel therapy for autoimmune diseases. This research examines the therapeutic effect of MSCs administration at different disease stages in experimental autoimmune encephalomyelitis (EAE). Classical and atypical scores of EAE, associated with Th1 and Th17 response, respectively, and also Treg lymphocytes, were evaluated.

View Article and Find Full Text PDF

Introduction: Mesenchymal stem cells (MSCs) are adult, multipotent, stem cells with immunomodulatory properties. The mechanisms involved in the capacity of MSCs to inhibit the proliferation of proinflammatory T lymphocytes, which appear responsible for causing autoimmune disease, have yet to be fully elucidated. One of the underlying mechanisms studied recently is the ability of MSCs to generate T regulatory (Treg) cells in vitro and in vivo from activated peripheral blood mononuclear cells (PBMC), T-CD4+ and also T-CD8(+) cells.

View Article and Find Full Text PDF

We have previously demonstrated that IT9302, a nonameric peptide homologous to the C-terminal domain of human IL-10, mimics several effects of the cytokine including down-regulation of the antigen presentation machinery and increased sensitivity of tumor cells to NK-mediated lysis. In the present report, we have explored a potential therapeutic utility for IT9302 related to the ex vivo production of tolerogenic dendritic cells (DCs). Our results indicate that IT9302 impedes human monocyte response to differentiation factors and reduces antigen presentation and co-stimulatory capacity by DCs.

View Article and Find Full Text PDF

Tumor cells treated with IL-10 were shown to have decreased, but peptide-inducible expression of MHC class I, decreased sensitivity to MHC class I-restricted CTL, and increased NK sensitivity. These findings could be explained, at least partially, by a down-regulation of TAP1/TAP2 expression. In this study, IT9302, a nanomeric peptide (AYMTMKIRN), homologous to the C-terminal of the human IL-10 sequence, was demonstrated to mimic these previously described IL-10 effects on MHC class I-related molecules and functions.

View Article and Find Full Text PDF