Immunotherapies for the treatment of cancer have spurred the development of new drugs that seek to harness the ability of T cells to recognize and kill malignant cells. There is a substantial need to evaluate how these experimental drugs influence T cell functional outputs in co-culture systems that contain cancerous cells. We describe an imaging cytometry-based platform that can simultaneously quantify activated T cells and the capacity of these T cells to kill cancer cells.
View Article and Find Full Text PDFTumor metastasis is connected to epithelial-mesenchymal heterogeneity (EMH) and the extracellular matrix (ECM) within the tumor microenvironment. Mesenchymal-like fibronectin (FN) expressing tumor cells enhance metastasis within tumors that have EMH. However, the secondary tumors are primarily composed of the FN null population.
View Article and Find Full Text PDFSafeguard mechanisms can ameliorate the potential risks associated with cell therapies but currently rely on the introduction of transgenes. This limits their application owing to immunogenicity or transgene silencing. We aimed to create a control mechanism for human cells that is not mediated by a transgene.
View Article and Find Full Text PDFIn breast cancer (BC), tissue stiffening via fibronectin (FN) and collagen accumulation is associated with advanced disease progression at both the primary tumor and metastatic sites. Here, we evaluate FN production in 15 BC cell lines, representing a variety of subtypes, phenotypes, metastatic potentials, and chemotherapeutic sensitivities. We demonstrate that intracellular and soluble FN is initially lost during tumorigenic transformation but is rescued in all lines with epithelial-mesenchymal plasticity (EMP).
View Article and Find Full Text PDF