Front Endocrinol (Lausanne)
December 2013
Intercellular communication is pivotal in optimizing and synchronizing cellular responses to keep homeostasis and to respond adequately to external stimuli. In the central nervous system (CNS), glutamatergic and GABAergic signals are postulated to be dependent on the glutamate/GABA-glutamine cycle for vesicular loading of neurotransmitters, for inactivating the signal and for the replenishment of the neurotransmitters. Islets of Langerhans release the hormones insulin and glucagon, but share similarities with CNS cells in for example transcriptional control of development and differentiation, and chromatin methylation.
View Article and Find Full Text PDFGlutamate mediates several modes of neurotransmission in the central nervous system including recently discovered retrograde signaling from neuronal dendrites. We have previously identified the system N transporter SN1 as being responsible for glutamine efflux from astroglia and proposed a system A transporter (SAT) in subsequent transport of glutamine into neurons for neurotransmitter regeneration. Here, we demonstrate that SAT2 expression is primarily confined to glutamatergic neurons in many brain regions with SAT2 being predominantly targeted to the somatodendritic compartments in these neurons.
View Article and Find Full Text PDFVesicular glutamate transporters (VGLUTs) 1 and 2 are expressed by neurons generally accepted to release glutamate as a neurotransmitter, whereas VGLUT3 appears in populations usually associated with a different classical transmitter. We now demonstrate VGLUT2 as well as the vesicular GABA transporter (VGAT) in a subset of presynaptic terminals in the dentate gyrus of the rat hippocampal formation. The terminals are distributed in a characteristic band overlapping with the outer part of the granule cell layer and the inner zone of the molecular layer.
View Article and Find Full Text PDFHandb Exp Pharmacol
February 2008
Many neuropsychiatric disorders appear to involve a disturbance of chemical neurotransmission, and the mechanism of available therapeutic agents supports this impression. Postsynaptic receptors have received considerable attention as drug targets, but some of the most successful agents influence presynaptic processes, in particular neurotransmitter reuptake. The pharmacological potential of many other presynaptic elements, and in particular the machinery responsible for loading transmitter into vesicles, has received only limited attention.
View Article and Find Full Text PDFThe excitability of dopaminergic (DA) neurons in the substantia nigra is controlled by the convergent activity of multiple glutamatergic afferents. Here, we show that vesicular glutamate transporter 3 (VGLUT3)-immunoreactive (ir) terminals segregate to the perisomatic region of DA neurons in the substantia nigra pars compacta, and VGLUT3 decorates a synapse population distinct from those marked by vesicular glutamate transporters 1 and 2. VGLUT3-ir nerve endings form asymmetric terminals on DA neurons.
View Article and Find Full Text PDFNatural killer (NK) cells perform multiple biological functions including tumor cell lysis and eradicating virally infected cells. Here, we report for the first time that D-galactosyl-beta1-1' sphingosine and D-glucosyl-beta1- 1' sphingosine damage human NK cells. We show that these cells express T-cell-associated gene-8, the receptor for glycosphingolipids.
View Article and Find Full Text PDF