Publications by authors named "Monica Isgut"

Polygenic risk scores (PRSs) hold promise in their potential translation into clinical settings to improve disease risk prediction. An important consideration in integrating PRSs into clinical settings is to gain an understanding of how to identify which subpopulations of individuals most benefit from PRSs for risk prediction. In this study, using the UK Biobank dataset, we trained logistic regression models to predict the 10 year incident risk of myocardial infarction, breast cancer, and schizophrenia using either just clinical features or clinical features combined with PRSs.

View Article and Find Full Text PDF

Personalized medicine plays an important role in treatment optimization for COVID-19 patient management. Early treatment in patients at high risk of severe complications is vital to prevent death and ventilator use. Predicting COVID-19 clinical outcomes using machine learning may provide a fast and data-driven solution for optimizing patient care by estimating the need for early treatment.

View Article and Find Full Text PDF

With the recent advancement of novel biomedical technologies such as high-throughput sequencing and wearable devices, multi-modal biomedical data ranging from multi-omics molecular data to real-time continuous bio-signals are generated at an unprecedented speed and scale every day. For the first time, these multi-modal biomedical data are able to make precision medicine close to a reality. However, due to data volume and the complexity, making good use of these multi-modal biomedical data requires major effort.

View Article and Find Full Text PDF

Genome-wide association studies (GWAS) have significantly advanced our understanding of the genetic underpinnings of diseases, but case and control cohort definitions for a given disease can vary between different published studies. For example, two GWAS for the same disease using the UK Biobank data set might use different data sources (i.e.

View Article and Find Full Text PDF

At the beginning of the COVID-19 pandemic, there was significant hype about the potential impact of artificial intelligence (AI) tools in combatting COVID-19 on diagnosis, prognosis, or surveillance. However, AI tools have not yet been widely successful. One of the key reason is the COVID-19 pandemic has demanded faster real-time development of AI-driven clinical and health support tools, including rapid data collection, algorithm development, validation, and deployment.

View Article and Find Full Text PDF

Despite the myriad peer-reviewed papers demonstrating novel Artificial Intelligence (AI)-based solutions to COVID-19 challenges during the pandemic, few have made a significant clinical impact, especially in diagnosis and disease precision staging. One major cause for such low impact is the lack of model transparency, significantly limiting the AI adoption in real clinical practice. To solve this problem, AI models need to be explained to users.

View Article and Find Full Text PDF

Background: Several polygenic risk scores (PRS) have been developed for cardiovascular risk prediction, but the additive value of including PRS together with conventional risk factors for risk prediction is questionable. This study assesses the clinical utility of including four PRS generated from 194, 46K, 1.5M, and 6M SNPs, along with conventional risk factors, to predict risk of ischemic heart disease (IHD), myocardial infarction (MI), and first MI event on or before age 50 (early MI).

View Article and Find Full Text PDF

Modern drug discovery efforts have had mediocre success rates with increasing developmental costs, and this has encouraged pharmaceutical scientists to seek innovative approaches. Recently with the rise of the fields of systems biology and metabolomics, network pharmacology (NP) has begun to emerge as a new paradigm in drug discovery, with a focus on multiple targets and drug combinations for treating disease. Studies on the benefits of drug combinations lay the groundwork for a renewed focus on natural products in drug discovery.

View Article and Find Full Text PDF

The in utero environment plays an essential role in shaping future growth and development. Psychological distress during pregnancy has been shown to perturb the delicate physiological milieu of pregnancy, and has been associated with negative repercussions in the offspring, including adverse birth outcomes, long-term defects in cognitive development, behavioral problems during childhood and high baseline levels of stress-related hormones. Fetal epigenetic programming, involving epigenetic processes, may help explain the link between maternal prenatal stress and its negative effects on the child.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionkgsn2i7h76orr4ri09r4crm5b6vlqo8a): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once