Publications by authors named "Monica Hoang"

Objective: Lipotoxic injury from renal lipid accumulation in obesity and type 2 diabetes (T2D) is implicated in associated kidney damage. However, models examining effects of renal ectopic lipid accumulation independent of obesity or T2D are lacking. We generated renal tubule-specific adipose triglyceride lipase knockout (RT-SAKO) mice to determine if this targeted triacylglycerol (TAG) over-storage affects glycemic control and kidney health.

View Article and Find Full Text PDF

Background: RNA editing at the Q/R site of GluA2 occurs with ~99% efficiency in the healthy brain, so that the majority of AMPARs contain GluA2(R) instead of the exonically encoded GluA2(Q). Reduced Q/R site editing infcreases AMPA receptor calcium permeability and leads to dendritic spine loss, neurodegeneration, seizures and learning impairments. Furthermore, GluA2 Q/R site editing is impaired in Alzheimer's disease (AD), raising the possibility that unedited GluA2(Q)-containing AMPARs contribute to synapse loss and neurodegeneration in AD.

View Article and Find Full Text PDF

Pancreatic β-cells can secrete insulin via 2 pathways characterized as KATP channel -dependent and -independent. The KATP channel-independent pathway is characterized by a rise in several potential metabolic signaling molecules, including the NADPH/NADP+ ratio and α-ketoglutarate (αKG). Prolyl hydroxylases (PHDs), which belong to the αKG-dependent dioxygenase superfamily, are known to regulate the stability of hypoxia-inducible factor α.

View Article and Find Full Text PDF

The α-ketoglutarate-dependent dioxygenase, prolyl-4-hydroxylase 3 (PHD3), is an HIF target that uses molecular oxygen to hydroxylate peptidyl prolyl residues. Although PHD3 has been reported to influence cancer cell metabolism and liver insulin sensitivity, relatively little is known about the effects of this highly conserved enzyme in insulin-secreting β cells in vivo. Here, we show that the deletion of PHD3 specifically in β cells (βPHD3KO) was associated with impaired glucose homeostasis in mice fed a high-fat diet.

View Article and Find Full Text PDF

The transcription factor aryl hydrocarbon receptor nuclear translocator (ARNT)/hypoxia-inducible factor (HIF)-1β (ARNT/HIF1β) plays a key role in maintaining β-cell function and has been shown to be one of the most downregulated transcription factors in islets from patients with type 2 diabetes. We have shown a role for ARNT/HIF1β in glucose sensing and insulin secretion in vitro and no defects in in vivo glucose homeostasis. To gain a better understanding of the role of ARNT/HIF1β in the development of diabetes, we placed control (+/+/Cre) and β-cell-specific ARNT/HIF1β knockout (fl/fl/Cre) mice on a high-fat diet (HFD).

View Article and Find Full Text PDF

Tre-2/USP6, BUB2, cdc16 domain family, member 1 (TBC1D1), a Rab-GTPase activating protein, is a paralogue of AS160, and has been implicated in the canonical insulin-signaling cascade in peripheral tissues. More recently, TBC1D1 was identified in rat and human pancreatic islets; however, the islet function of TBC1D1 remains not fully understood. We examined the role of TBC1D1 in glucose homeostasis and insulin secretion utilizing a rat knockout (KO) model.

View Article and Find Full Text PDF

Type 2 diabetes is associated with impaired nutrient-regulated anaplerosis and insulin secretion in pancreatic β-cells. One key anaplerotic substrate that may be involved in regulating insulin release is α-ketoglutarate (αKG). Since prolyl hydroxylase domain proteins (PHDs) can metabolize cytosolic αKG, we sought to explore the role of this enzyme in the regulation of β-cell function.

View Article and Find Full Text PDF

Aims/hypothesis: It has been suggested that the transcription factor ARNT/HIF1β is critical for maintaining in vivo glucose homeostasis and pancreatic beta cell glucose-stimulated insulin secretion (GSIS). Our goal was to gain more insights into the metabolic defects seen after the loss of ARNT/HIF1β in beta cells.

Methods: The in vivo and in vitro consequences of the loss of ARNT/HIF1β were investigated in beta cell specific Arnt/Hif1β knockout mice (β-Arnt (fl/fl/Cre) mice).

View Article and Find Full Text PDF

RWJ-54428 (MC-02,479) is a new cephalosporin active against gram-positive bacteria, including methicillin-resistant Staphylococcus aureus (MRSA). The potency of this new cephalosporin against MRSA is related to a high affinity for penicillin-binding protein 2a (PBP 2a), as assessed in a competition assay using biotinylated ampicillin as the reporter molecule. RWJ-54428 had high activity against MRSA strains COL and 67-0 (MIC of 1 micro g/ml) and also showed affinity for PBP 2a, with a 50% inhibitory concentration (IC(50)) of 0.

View Article and Find Full Text PDF